Serializable
, Cloneable
, Iterable<K>
, Map<K,V>
, BiMap<K,V>
, MutableBiMap<K,V>
, InternalIterable<K>
, MapIterable<K,V>
, MutableMapIterable<K,V>
, RichIterable<K>
public class SynchronizedBiMap<K,V> extends AbstractSynchronizedMapIterable<K,V> implements MutableBiMap<K,V>, Serializable
Modifier and Type | Method | Description |
---|---|---|
MutableBiMap<K,V> |
asSynchronized() |
Returns a synchronized wrapper backed by this map.
|
MutableBiMap<K,V> |
asUnmodifiable() |
Returns an unmodifiable view of this map.
|
MutableBiMap<K,V> |
clone() |
|
<K2,V2> MutableBiMap<K2,V2> |
collect(Function2<? super K,? super V,Pair<K2,V2>> function) |
For each key and value of the map the function is evaluated.
|
<R> MutableBiMap<K,R> |
collectValues(Function2<? super K,? super V,? extends R> function) |
For each key and value of the map the function is evaluated.
|
Set<Map.Entry<K,V>> |
entrySet() |
|
MutableSetMultimap<V,K> |
flip() |
Given a map from Domain
-> Range return a multimap from Range -> Domain. |
MutableBiMap<V,K> |
flipUniqueValues() |
Return the MapIterable that is obtained by flipping the direction of this map and making the associations
from value to key.
|
V |
forcePut(K key,
V value) |
Similar to
MutableBiMap.put(Object, Object) , except that it quietly removes any existing entry with the same
value before putting the key-value pair. |
<V1> MutableSetMultimap<V1,V> |
groupBy(Function<? super V,? extends V1> function) |
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V1> MutableSetMultimap<V1,V> |
groupByEach(Function<? super V,? extends Iterable<V1>> function) |
Similar to
RichIterable.groupBy(Function) , except the result of evaluating function will return a collection of keys
for each value. |
<VV> MutableBiMap<VV,V> |
groupByUniqueKey(Function<? super V,? extends VV> function) |
For each element of the iterable, the function is evaluated and he results of these evaluations are collected
into a new map, where the transformed value is the key.
|
MutableBiMap<V,K> |
inverse() |
Returns an inversed view of this BiMap, where the associations are in the direction of this bimap's values to keys.
|
Set<K> |
keySet() |
|
RichIterable<K> |
keysView() |
Returns an unmodifiable lazy iterable wrapped around the keySet for the map.
|
MutableBiMap<K,V> |
newEmpty() |
Creates a new instance of the same type, using the default capacity and growth parameters.
|
static <K,V> SynchronizedBiMap<K,V> |
of(MutableBiMap<K,V> map) |
This method will take a MutableBiMap and wrap it directly in a SynchronizedBiMap.
|
PartitionMutableSet<V> |
partition(Predicate<? super V> predicate) |
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableSet<V> |
partitionWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableSet<V> |
reject(Predicate<? super V> predicate) |
Returns all elements of the source collection that return false when evaluating of the predicate.
|
MutableBiMap<K,V> |
reject(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is false,
that key and value are returned in a new map.
|
<P> MutableSet<V> |
rejectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.reject(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
MutableSet<V> |
select(Predicate<? super V> predicate) |
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableBiMap<K,V> |
select(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is true,
that key and value are returned in a new map.
|
<S> MutableSet<S> |
selectInstancesOf(Class<S> clazz) |
Returns all elements of the source collection that are instances of the Class
clazz . |
<P> MutableSet<V> |
selectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.select(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
MutableBiMap<K,V> |
tap(Procedure<? super V> procedure) |
Executes the Procedure for each element in the iterable and returns
this . |
ImmutableBiMap<K,V> |
toImmutable() |
Converts the BiMap to an ImmutableBiMap.
|
Collection<V> |
values() |
|
RichIterable<V> |
valuesView() |
Returns an unmodifiable lazy iterable wrapped around the values for the map.
|
MutableBiMap<K,V> |
withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs) |
Convenience var-args version of withAllKeyValues
|
MutableBiMap<K,V> |
withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withKeyValue(K key,
V value) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withoutAllKeys(Iterable<? extends K> keys) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
MutableBiMap<K,V> |
withoutKey(K key) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
<S> MutableSet<Pair<V,S>> |
zip(Iterable<S> that) |
Deprecated.
in 8.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<V,Integer>> |
zipWithIndex() |
Deprecated.
in 8.0. Use
OrderedIterable.zipWithIndex() instead. |
add, aggregateBy, aggregateInPlaceBy, clear, containsKey, containsValue, countBy, countByEach, countByWith, detect, detectOptional, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, getIfAbsentValue, getIfAbsentWith, ifPresentApply, keyValuesView, put, putAll, putPair, remove, removeAllKeys, removeIf, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWith
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collect, collectBoolean, collectBoolean, collectByte, collectByte, collectChar, collectChar, collectDouble, collectDouble, collectFloat, collectFloat, collectIf, collectIf, collectInt, collectInt, collectLong, collectLong, collectShort, collectShort, collectWith, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countBy, countByEach, countByWith, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, equals, flatCollect, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, hashCode, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toBiMap, toList, toMap, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedMapBy, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndex
forEach, forEachWith, forEachWithIndex
clear, compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, entry, equals, forEach, get, getOrDefault, hashCode, isEmpty, merge, of, of, of, of, of, of, of, of, of, of, of, ofEntries, putAll, putIfAbsent, remove, remove, replace, replace, replaceAll, size
containsKey, containsValue, detect, detectOptional, equals, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentValue, getIfAbsentWith, hashCode, ifPresentApply, keyValuesView, parallelStream, spliterator, stream, toString
put
add, aggregateBy, aggregateInPlaceBy, countBy, countByEach, countByWith, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, putPair, removeAllKeys, removeIf, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWith
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collect, collectBoolean, collectBoolean, collectByte, collectByte, collectChar, collectChar, collectDouble, collectDouble, collectFloat, collectFloat, collectIf, collectIf, collectInt, collectInt, collectLong, collectLong, collectShort, collectShort, collectWith, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countBy, countByEach, countByWith, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, flatCollect, flatCollect, flatCollectWith, flatCollectWith, forEach, getAny, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reduce, reduceInPlace, reduceInPlace, reject, rejectWith, select, selectWith, size, summarizeDouble, summarizeFloat, summarizeInt, summarizeLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toBiMap, toList, toMap, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedMapBy, toSortedSet, toSortedSet, toSortedSetBy, zip, zipWithIndex
public static <K,V> SynchronizedBiMap<K,V> of(MutableBiMap<K,V> map)
public V forcePut(K key, V value)
MutableBiMap
MutableBiMap.put(Object, Object)
, except that it quietly removes any existing entry with the same
value before putting the key-value pair.forcePut
in interface MutableBiMap<K,V>
public MutableBiMap<K,V> asSynchronized()
MutableMapIterable
Collections.synchronizedMap(this)
only with the more feature rich return type of
MutableMapIterable
.
The preferred way of iterating over a synchronized map is to use the forEachKey(), forEachValue() and forEachKeyValue() methods which are properly synchronized internally.
MutableMap synchedMap = map.asSynchronized(); synchedMap.forEachKey(key -> ... ); synchedMap.forEachValue(value -> ... ); synchedMap.forEachKeyValue((key, value) -> ... );
If you want to iterate imperatively over the keySet(), values(), or entrySet(), you will need to protect the iteration by wrapping the code in a synchronized block on the map.
asSynchronized
in interface MutableBiMap<K,V>
asSynchronized
in interface MutableMapIterable<K,V>
Collections.synchronizedMap(Map)
public MutableBiMap<K,V> asUnmodifiable()
MutableMapIterable
Collections.unmodifiableMap(this)
only with a return type that supports the full
iteration protocols available on MutableMapIterable
. Methods which would
mutate the underlying map will throw UnsupportedOperationExceptions.asUnmodifiable
in interface MutableBiMap<K,V>
asUnmodifiable
in interface MutableMapIterable<K,V>
Collections.unmodifiableMap(Map)
public MutableBiMap<K,V> clone()
public MutableBiMap<K,V> tap(Procedure<? super V> procedure)
RichIterable
this
.
Example using a Java 8 lambda expression:
RichIterable<Person> tapped = people.tap(person -> LOGGER.info(person.getName()));
Example using an anonymous inner class:
RichIterable<Person> tapped = people.tap(new Procedure<Person>() { public void value(Person person) { LOGGER.info(person.getName()); } });
tap
in interface BiMap<K,V>
tap
in interface MapIterable<K,V>
tap
in interface MutableBiMap<K,V>
tap
in interface MutableMapIterable<K,V>
tap
in interface RichIterable<K>
tap
in class AbstractSynchronizedMapIterable<K,V>
RichIterable.each(Procedure)
,
RichIterable.forEach(Procedure)
public <K2,V2> MutableBiMap<K2,V2> collect(Function2<? super K,? super V,Pair<K2,V2>> function)
BiMap
MapIterable<String, String> collected = peopleByCity.collect((City city, Person person) -> Pair.of(city.getCountry(), person.getAddress().getCity()));Implementations are expected to delegate to
MutableBiMap.put(Object, Object)
,
ImmutableBiMap.newWithKeyValue(Object, Object)
, or equivalent, not MutableBiMap.forcePut(Object, Object)
.public <R> MutableBiMap<K,R> collectValues(Function2<? super K,? super V,? extends R> function)
BiMap
MapIterable<City, String> collected = peopleByCity.collectValues((City city, Person person) -> person.getFirstName() + " " + person.getLastName());Implementations are expected to delegate to
MutableBiMap.put(Object, Object)
,
ImmutableBiMap.newWithKeyValue(Object, Object)
, or equivalent, not MutableBiMap.forcePut(Object, Object)
.collectValues
in interface BiMap<K,V>
collectValues
in interface MapIterable<K,V>
collectValues
in interface MutableBiMap<K,V>
collectValues
in interface MutableMapIterable<K,V>
public MutableSet<V> select(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected = people.select(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getCity().equals("London"); } });
select
in interface BiMap<K,V>
select
in interface MutableBiMap<K,V>
select
in interface MutableMapIterable<K,V>
select
in interface RichIterable<K>
select
in class AbstractSynchronizedMapIterable<K,V>
public MutableBiMap<K,V> select(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> selected = peopleByCity.select((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
public <P> MutableSet<V> selectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
RichIterable.select(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.selectWith((Person person, Integer age) -> person.getAge()>= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected = people.selectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge()>= age; } }, Integer.valueOf(18));
selectWith
in interface BiMap<K,V>
selectWith
in interface MutableBiMap<K,V>
selectWith
in interface MutableMapIterable<K,V>
selectWith
in interface RichIterable<K>
selectWith
in class AbstractSynchronizedMapIterable<K,V>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public <S> MutableSet<S> selectInstancesOf(Class<S> clazz)
RichIterable
clazz
.
RichIterable<Integer> integers = List.mutable.with(new Integer(0), new Long(0L), new Double(0.0)).selectInstancesOf(Integer.class);
selectInstancesOf
in interface BiMap<K,V>
selectInstancesOf
in interface MutableBiMap<K,V>
selectInstancesOf
in interface MutableMapIterable<K,V>
selectInstancesOf
in interface RichIterable<K>
selectInstancesOf
in class AbstractSynchronizedMapIterable<K,V>
public MutableSet<V> reject(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected = people.reject(new Predicate<Person>() { public boolean accept(Person person) { return person.person.getLastName().equals("Smith"); } });
reject
in interface BiMap<K,V>
reject
in interface MutableBiMap<K,V>
reject
in interface MutableMapIterable<K,V>
reject
in interface RichIterable<K>
reject
in class AbstractSynchronizedMapIterable<K,V>
predicate
- a Predicate
to use as the reject criteriaPredicate.accept(Object)
method to evaluate to falsepublic MutableBiMap<K,V> reject(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> rejected = peopleByCity.reject((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
public <P> MutableSet<V> rejectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
RichIterable.reject(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected = people.rejectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() < age; } }, Integer.valueOf(18));
rejectWith
in interface BiMap<K,V>
rejectWith
in interface MutableBiMap<K,V>
rejectWith
in interface MutableMapIterable<K,V>
rejectWith
in interface RichIterable<K>
rejectWith
in class AbstractSynchronizedMapIterable<K,V>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public PartitionMutableSet<V> partition(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getState().getName().equals("New York"); } });
partition
in interface BiMap<K,V>
partition
in interface MutableBiMap<K,V>
partition
in interface MutableMapIterable<K,V>
partition
in interface RichIterable<K>
partition
in class AbstractSynchronizedMapIterable<K,V>
public <P> PartitionMutableSet<V> partitionWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partitionWith(new Predicate2<Person, String>() { public boolean accept(Person person, String state) { return person.getAddress().getState().getName().equals(state); } }, "New York");
partitionWith
in interface BiMap<K,V>
partitionWith
in interface MutableBiMap<K,V>
partitionWith
in interface RichIterable<K>
partitionWith
in class AbstractSynchronizedRichIterable<V>
public <V1> MutableSetMultimap<V1,V> groupBy(Function<? super V,? extends V1> function)
RichIterable
Example using a Java 8 method reference:
Multimap<String, Person> peopleByLastName = people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName = people.groupBy(new Function<Person, String>() { public String valueOf(Person person) { return person.getLastName(); } });
groupBy
in interface BiMap<K,V>
groupBy
in interface MutableBiMap<K,V>
groupBy
in interface MutableMapIterable<K,V>
groupBy
in interface RichIterable<K>
groupBy
in class AbstractSynchronizedMapIterable<K,V>
public <V1> MutableSetMultimap<V1,V> groupByEach(Function<? super V,? extends Iterable<V1>> function)
RichIterable
RichIterable.groupBy(Function)
, except the result of evaluating function will return a collection of keys
for each value.groupByEach
in interface BiMap<K,V>
groupByEach
in interface MutableBiMap<K,V>
groupByEach
in interface MutableMapIterable<K,V>
groupByEach
in interface RichIterable<K>
groupByEach
in class AbstractSynchronizedMapIterable<K,V>
public MutableSetMultimap<V,K> flip()
MapIterable
->
Range return a multimap from Range ->
Domain. We chose the name 'flip'
rather than 'invert' or 'transpose' since this method does not have the property of applying twice
returns the original.
Since the keys in the input are unique, the values in the output are unique, so the return type should be a SetMultimap. However since SetMultimap and SortedSetMultimap don't inherit from one another, SetMultimap here does not allow SortedMapIterable to have a SortedSetMultimap return. Thus we compromise and call this Multimap, even though all implementations will be a SetMultimap or SortedSetMultimap.
public MutableBiMap<K,V> newEmpty()
MutableMapIterable
newEmpty
in interface MutableBiMap<K,V>
newEmpty
in interface MutableMapIterable<K,V>
public MutableBiMap<V,K> inverse()
BiMap
public MutableBiMap<V,K> flipUniqueValues()
MapIterable
MapIterable<Integer, String> map = this.newMapWithKeysValues(1, "1", 2, "2", 3, "3"); MapIterable<String, Integer> result = map.flipUniqueValues(); Assert.assertTrue(result.equals(UnifiedMap.newWithKeysValues("1", 1, "2", 2, "3", 3)));
flipUniqueValues
in interface BiMap<K,V>
flipUniqueValues
in interface MapIterable<K,V>
flipUniqueValues
in interface MutableBiMap<K,V>
flipUniqueValues
in interface MutableMapIterable<K,V>
public RichIterable<K> keysView()
MapIterable
keysView
in interface MapIterable<K,V>
public RichIterable<V> valuesView()
MapIterable
valuesView
in interface MapIterable<K,V>
public ImmutableBiMap<K,V> toImmutable()
BiMap
toImmutable
in interface BiMap<K,V>
toImmutable
in interface MapIterable<K,V>
toImmutable
in interface MutableMapIterable<K,V>
@Deprecated public MutableSet<Pair<V,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex()
instead.RichIterable
RichIterable
with its indices.zipWithIndex
in interface BiMap<K,V>
zipWithIndex
in interface MutableBiMap<K,V>
zipWithIndex
in interface MutableMapIterable<K,V>
zipWithIndex
in interface RichIterable<K>
zipWithIndex
in class AbstractSynchronizedMapIterable<K,V>
RichIterable
containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)
public <VV> MutableBiMap<VV,V> groupByUniqueKey(Function<? super V,? extends VV> function)
RichIterable
groupByUniqueKey
in interface BiMap<K,V>
groupByUniqueKey
in interface MutableBiMap<K,V>
groupByUniqueKey
in interface MutableMapIterable<K,V>
groupByUniqueKey
in interface RichIterable<K>
groupByUniqueKey
in class AbstractSynchronizedMapIterable<K,V>
RichIterable.groupBy(Function)
@Deprecated public <S> MutableSet<Pair<V,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable)
instead.RichIterable
RichIterable
formed from this RichIterable
and another RichIterable
by
combining corresponding elements in pairs. If one of the two RichIterable
s is longer than the other, its
remaining elements are ignored.zip
in interface BiMap<K,V>
zip
in interface MutableBiMap<K,V>
zip
in interface MutableMapIterable<K,V>
zip
in interface RichIterable<K>
zip
in class AbstractSynchronizedMapIterable<K,V>
S
- the type of the second half of the returned pairsthat
- The RichIterable
providing the second half of each result pairRichIterable
containing pairs consisting of corresponding elements of this
RichIterable
and that. The length of the returned RichIterable
is the minimum of the lengths of
this RichIterable
and that.public MutableBiMap<K,V> withKeyValue(K key, V value)
MutableMapIterable
map = map.withKeyValue("new key", "new value");In the case of FixedSizeMap, a new instance will be returned by withKeyValue, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling put on themselves.
withKeyValue
in interface MutableBiMap<K,V>
withKeyValue
in interface MutableMapIterable<K,V>
Map.put(Object, Object)
public MutableBiMap<K,V> withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues)
MutableMapIterable
map = map.withAllKeyValues(FastList.newListWith(PairImpl.of("new key", "new value")));In the case of FixedSizeMap, a new instance will be returned by withAllKeyValues, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling put on themselves.
withAllKeyValues
in interface MutableBiMap<K,V>
withAllKeyValues
in interface MutableMapIterable<K,V>
Map.put(Object, Object)
public MutableBiMap<K,V> withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
MutableMapIterable
withAllKeyValueArguments
in interface MutableBiMap<K,V>
withAllKeyValueArguments
in interface MutableMapIterable<K,V>
MutableMapIterable.withAllKeyValues(Iterable)
public MutableBiMap<K,V> withoutKey(K key)
MutableMapIterable
map = map.withoutKey("key");In the case of FixedSizeMap, a new instance will be returned by withoutKey, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling remove on themselves.
withoutKey
in interface MutableBiMap<K,V>
withoutKey
in interface MutableMapIterable<K,V>
Map.remove(Object)
public MutableBiMap<K,V> withoutAllKeys(Iterable<? extends K> keys)
MutableMapIterable
map = map.withoutAllKeys(FastList.newListWith("key1", "key2"));In the case of FixedSizeMap, a new instance will be returned by withoutAllKeys, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling remove on themselves.
withoutAllKeys
in interface MutableBiMap<K,V>
withoutAllKeys
in interface MutableMapIterable<K,V>
Map.remove(Object)
Copyright © 2004–2019. All rights reserved.