public interface MutableBiMap<K,V> extends BiMap<K,V>, MutableMapIterable<K,V>, Cloneable
BiMap
whose contents can be altered after initialization.Modifier and Type | Method and Description |
---|---|
MutableBiMap<K,V> |
asSynchronized()
Returns a synchronized (thread-safe) map backed by the specified map.
|
MutableBiMap<K,V> |
asUnmodifiable()
Returns an unmodifiable view of this map.
|
MutableBiMap<K,V> |
clone() |
<K2,V2> MutableBiMap<K2,V2> |
collect(Function2<? super K,? super V,Pair<K2,V2>> function)
For each key and value of the map the function is evaluated.
|
<R> MutableBiMap<K,R> |
collectValues(Function2<? super K,? super V,? extends R> function)
For each key and value of the map the function is evaluated.
|
MutableSetMultimap<V,K> |
flip()
Given a map from Domain -> Range return a multimap from Range -> Domain.
|
MutableBiMap<V,K> |
flipUniqueValues()
Return the MapIterable that is obtained by flipping the direction of this map and making the associations
from value to key.
|
V |
forcePut(K key,
V value)
Similar to
put(Object, Object) , except that it quietly removes any existing entry with the same
value before putting the key-value pair. |
<V1> MutableSetMultimap<V1,V> |
groupBy(Function<? super V,? extends V1> function)
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V1> MutableSetMultimap<V1,V> |
groupByEach(Function<? super V,? extends Iterable<V1>> function)
Similar to
RichIterable.groupBy(Function) , except the result of evaluating function will return a collection of keys
for each value. |
<VV> MutableBiMap<VV,V> |
groupByUniqueKey(Function<? super V,? extends VV> function)
For each element of the iterable, the function is evaluated and he results of these evaluations are collected
into a new map, where the transformed value is the key.
|
MutableBiMap<V,K> |
inverse()
Returns an inversed view of this BiMap, where the associations are in the direction of this bimap's values to keys.
|
MutableBiMap<K,V> |
newEmpty()
Creates a new instance of the same type, using the default capacity and growth parameters.
|
PartitionMutableSet<V> |
partition(Predicate<? super V> predicate)
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableSet<V> |
partitionWith(Predicate2<? super V,? super P> predicate,
P parameter)
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
V |
put(K key,
V value)
Similar to
Map.put(Object, Object) , except that it throws on the addition of a duplicate value. |
MutableSet<V> |
reject(Predicate<? super V> predicate)
Returns all elements of the source collection that return false when evaluating of the predicate.
|
MutableBiMap<K,V> |
reject(Predicate2<? super K,? super V> predicate)
For each key and value of the map the predicate is evaluated, if the result of the evaluation is false,
that key and value are returned in a new map.
|
<P> MutableSet<V> |
rejectWith(Predicate2<? super V,? super P> predicate,
P parameter)
Similar to
RichIterable.reject(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
MutableSet<V> |
select(Predicate<? super V> predicate)
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableBiMap<K,V> |
select(Predicate2<? super K,? super V> predicate)
For each key and value of the map the predicate is evaluated, if the result of the evaluation is true,
that key and value are returned in a new map.
|
<S> MutableSet<S> |
selectInstancesOf(Class<S> clazz)
Returns all elements of the source collection that are instances of the Class
clazz . |
<P> MutableSet<V> |
selectWith(Predicate2<? super V,? super P> predicate,
P parameter)
Similar to
RichIterable.select(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
MutableBiMap<K,V> |
tap(Procedure<? super V> procedure)
Executes the Procedure for each value of the map and returns
this . |
MutableBiMap<K,V> |
withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
Convenience var-args version of withAllKeyValues
|
MutableBiMap<K,V> |
withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues)
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withKeyValue(K key,
V value)
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withoutAllKeys(Iterable<? extends K> keys)
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
MutableBiMap<K,V> |
withoutKey(K key)
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
<S> MutableSet<Pair<V,S>> |
zip(Iterable<S> that)
Returns a
RichIterable formed from this RichIterable and another RichIterable by
combining corresponding elements in pairs. |
MutableSet<Pair<V,Integer>> |
zipWithIndex()
Zips this
RichIterable with its indices. |
toImmutable
add, aggregateBy, aggregateInPlaceBy, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, removeKey, toImmutable, updateValue, updateValueWith
containsKey, containsValue, detect, equals, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentValue, getIfAbsentWith, hashCode, ifPresentApply, keysView, keyValuesView, toString, valuesView
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collect, collectBoolean, collectBoolean, collectByte, collectByte, collectChar, collectChar, collectDouble, collectDouble, collectFloat, collectFloat, collectIf, collectIf, collectInt, collectInt, collectLong, collectLong, collectShort, collectShort, collectWith, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, flatCollect, flatCollect, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, isEmpty, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, zip, zipWithIndex
forEach, forEachWith, forEachWithIndex
forEach, iterator, spliterator
clear, compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, entrySet, equals, forEach, get, getOrDefault, hashCode, isEmpty, keySet, merge, putAll, putIfAbsent, remove, remove, replace, replace, replaceAll, size, values
MutableBiMap<K,V> newEmpty()
MutableMapIterable
newEmpty
in interface MutableMapIterable<K,V>
MutableBiMap<V,K> inverse()
BiMap
MutableBiMap<V,K> flipUniqueValues()
MapIterable
MapIterablemap = this.newMapWithKeysValues(1, "1", 2, "2", 3, "3"); MapIterable result = map.flipUniqueValues(); Assert.assertTrue(result.equals(UnifiedMap.newWithKeysValues("1", 1, "2", 2, "3", 3)));
flipUniqueValues
in interface BiMap<K,V>
flipUniqueValues
in interface MapIterable<K,V>
flipUniqueValues
in interface MutableMapIterable<K,V>
MutableSetMultimap<V,K> flip()
MapIterable
Since the keys in the input are unique, the values in the output are unique, so the return type should be a SetMultimap. However since SetMultimap and SortedSetMultimap don't inherit from one another, SetMultimap here does not allow SortedMapIterable to have a SortedSetMultimap return. Thus we compromise and call this Multimap, even though all implementations will be a SetMultimap or SortedSetMultimap.
V put(K key, V value)
Map.put(Object, Object)
, except that it throws on the addition of a duplicate value.put
in interface Map<K,V>
IllegalArgumentException
- if the value already exists in the bimap.V forcePut(K key, V value)
put(Object, Object)
, except that it quietly removes any existing entry with the same
value before putting the key-value pair.MutableBiMap<K,V> asSynchronized()
MutableMapIterable
It is imperative that the user manually synchronize on the returned map when iterating over any of its collection views:
MutableMap map = myMutableMap.asSynchronized(); ... Set set = map.keySet(); // Needn't be in synchronized block ... synchronized(map) { // Synchronizing on map, not set! Iterator i = s.iterator(); // Must be in synchronized block while (i.hasNext()) foo(i.next()); }Failure to follow this advice may result in non-deterministic behavior.
The preferred way of iterating over a synchronized collection is to use the collection.forEach() method which is properly synchronized internally.
MutableMap map = myMutableMap.asSynchronized(); ... Set set = map.keySet(); // Needn't be in synchronized block ... Iterate.forEach(set, new Procedure() { public void value(Object each) { ... } });
The returned map will be serializable if the specified map is serializable.
asSynchronized
in interface MutableMapIterable<K,V>
MutableBiMap<K,V> asUnmodifiable()
MutableMapIterable
UnsupportedOperationException
.
The returned map will be Serializable if this map is Serializable.asUnmodifiable
in interface MutableMapIterable<K,V>
MutableBiMap<K,V> clone()
MutableBiMap<K,V> tap(Procedure<? super V> procedure)
MapIterable
this
.
e.g. return peopleByCity.tap(new Procedure() { public void value(Person person) { LOGGER.info(person.getName()); } });
tap
in interface BiMap<K,V>
tap
in interface MapIterable<K,V>
tap
in interface MutableMapIterable<K,V>
tap
in interface RichIterable<V>
InternalIterable.forEach(Procedure)
MutableBiMap<K,V> select(Predicate2<? super K,? super V> predicate)
MapIterable
e.g. peopleByCity.select(new Predicate2<City, Person>() { public boolean accept(City city, Person person) { return city.getName().equals("Anytown") && person.getLastName().equals("Smith"); } });
MutableBiMap<K,V> reject(Predicate2<? super K,? super V> predicate)
MapIterable
e.g. peopleByCity.reject(new Predicate2<City, Person>() { public boolean accept(City city, Person person) { return city.getName().equals("Anytown") && person.getLastName().equals("Smith"); } });
<K2,V2> MutableBiMap<K2,V2> collect(Function2<? super K,? super V,Pair<K2,V2>> function)
BiMap
e.g. peopleByCity.collect(new Function2<City, Person, String>() { public String value(City city, Person person) { return Pair.of(city.getCountry(), person.getAddress().getCity()); } });Implementations are expected to delegate to
put(Object, Object)
,
ImmutableBiMap.newWithKeyValue(Object, Object)
, or equivalent, not forcePut(Object, Object)
.<R> MutableBiMap<K,R> collectValues(Function2<? super K,? super V,? extends R> function)
BiMap
e.g. peopleByCity.collectValues(new Function2<City, Person, String>() { public String value(City city, Person person) { return person.getFirstName() + " " + person.getLastName(); } });Implementations are expected to delegate to
put(Object, Object)
,
ImmutableBiMap.newWithKeyValue(Object, Object)
, or equivalent, not forcePut(Object, Object)
.collectValues
in interface BiMap<K,V>
collectValues
in interface MapIterable<K,V>
collectValues
in interface MutableMapIterable<K,V>
MutableSet<V> select(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected = people.select(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getCity().equals("London"); } });
<P> MutableSet<V> selectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
RichIterable.select(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected = people.selectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() >= age; } }, Integer.valueOf(18));
selectWith
in interface BiMap<K,V>
selectWith
in interface MutableMapIterable<K,V>
selectWith
in interface RichIterable<V>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
MutableSet<V> reject(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected = people.reject(new Predicate<Person>() { public boolean accept(Person person) { return person.person.getLastName().equals("Smith"); } });
reject
in interface BiMap<K,V>
reject
in interface MutableMapIterable<K,V>
reject
in interface RichIterable<V>
predicate
- a Predicate
to use as the reject criteriaPredicate.accept(Object)
method to evaluate to false<P> MutableSet<V> rejectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
RichIterable.reject(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected = people.rejectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() < age; } }, Integer.valueOf(18));
rejectWith
in interface BiMap<K,V>
rejectWith
in interface MutableMapIterable<K,V>
rejectWith
in interface RichIterable<V>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
PartitionMutableSet<V> partition(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getState().getName().equals("New York"); } });
<P> PartitionMutableSet<V> partitionWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith(new Predicate2<Person, String>() { public boolean accept(Person person, String state) { return person.getAddress().getState().getName().equals(state); } }, "New York");
partitionWith
in interface BiMap<K,V>
partitionWith
in interface RichIterable<V>
<S> MutableSet<S> selectInstancesOf(Class<S> clazz)
RichIterable
clazz
.selectInstancesOf
in interface BiMap<K,V>
selectInstancesOf
in interface MutableMapIterable<K,V>
selectInstancesOf
in interface RichIterable<V>
<S> MutableSet<Pair<V,S>> zip(Iterable<S> that)
RichIterable
RichIterable
formed from this RichIterable
and another RichIterable
by
combining corresponding elements in pairs. If one of the two RichIterable
s is longer than the other, its
remaining elements are ignored.zip
in interface BiMap<K,V>
zip
in interface MutableMapIterable<K,V>
zip
in interface RichIterable<V>
S
- the type of the second half of the returned pairsthat
- The RichIterable
providing the second half of each result pairRichIterable
containing pairs consisting of corresponding elements of this RichIterable
and that. The length of the returned RichIterable
is the minimum of the lengths of
this RichIterable
and that.MutableSet<Pair<V,Integer>> zipWithIndex()
RichIterable
RichIterable
with its indices.zipWithIndex
in interface BiMap<K,V>
zipWithIndex
in interface MutableMapIterable<K,V>
zipWithIndex
in interface RichIterable<V>
RichIterable
containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)
<V1> MutableSetMultimap<V1,V> groupBy(Function<? super V,? extends V1> function)
RichIterable
Example using a Java 8 method reference:
Multimap<String, Person> peopleByLastName = people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName = people.groupBy(new Function<Person, String>() { public String value(Person person) { return person.getLastName(); } });
<V1> MutableSetMultimap<V1,V> groupByEach(Function<? super V,? extends Iterable<V1>> function)
RichIterable
RichIterable.groupBy(Function)
, except the result of evaluating function will return a collection of keys
for each value.groupByEach
in interface BiMap<K,V>
groupByEach
in interface MutableMapIterable<K,V>
groupByEach
in interface RichIterable<V>
<VV> MutableBiMap<VV,V> groupByUniqueKey(Function<? super V,? extends VV> function)
RichIterable
groupByUniqueKey
in interface BiMap<K,V>
groupByUniqueKey
in interface MutableMapIterable<K,V>
groupByUniqueKey
in interface RichIterable<V>
RichIterable.groupBy(Function)
MutableBiMap<K,V> withKeyValue(K key, V value)
MutableMapIterable
map = map.withKeyValue("new key", "new value");In the case of FixedSizeMap, a new instance will be returned by withKeyValue, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling put on themselves.
withKeyValue
in interface MutableMapIterable<K,V>
Map.put(Object, Object)
MutableBiMap<K,V> withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues)
MutableMapIterable
map = map.withAllKeyValues(FastList.newListWith(PairImpl.of("new key", "new value")));In the case of FixedSizeMap, a new instance will be returned by withAllKeyValues, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling put on themselves.
withAllKeyValues
in interface MutableMapIterable<K,V>
Map.put(Object, Object)
MutableBiMap<K,V> withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
MutableMapIterable
withAllKeyValueArguments
in interface MutableMapIterable<K,V>
MutableMapIterable.withAllKeyValues(Iterable)
MutableBiMap<K,V> withoutKey(K key)
MutableMapIterable
map = map.withoutKey("key");In the case of FixedSizeMap, a new instance will be returned by withoutKey, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling remove on themselves.
withoutKey
in interface MutableMapIterable<K,V>
Map.remove(Object)
MutableBiMap<K,V> withoutAllKeys(Iterable<? extends K> keys)
MutableMapIterable
map = map.withoutAllKeys(FastList.newListWith("key1", "key2"));In the case of FixedSizeMap, a new instance will be returned by withoutAllKeys, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling remove on themselves.
withoutAllKeys
in interface MutableMapIterable<K,V>
Map.remove(Object)
Copyright © 2004–2016. All rights reserved.