public class SynchronizedBag<T> extends AbstractSynchronizedMutableCollection<T> implements MutableBag<T>, Serializable
MutableBag
. It is imperative that the user manually synchronize on the collection when iterating over it using the
standard JDK iterator or JDK 5 for loop, as per Collections.synchronizedCollection(Collection)
.MutableBag.asSynchronized()
,
Serialized FormConstructor and Description |
---|
SynchronizedBag(MutableBag<T> bag,
Object newLock) |
Modifier and Type | Method and Description |
---|---|
void |
addOccurrences(T item,
int occurrences) |
MutableBag<T> |
asSynchronized()
Returns a synchronized (thread-safe) collection backed by this collection.
|
MutableBag<T> |
asUnmodifiable()
Returns an unmodifiable view of this collection.
|
MutableList<ObjectIntPair<T>> |
bottomOccurrences(int count)
Returns the
count least frequently occurring items. |
<V> MutableBag<V> |
collect(Function<? super T,? extends V> function)
Returns a new collection with the results of applying the specified function on each element of the source
collection.
|
MutableBooleanBag |
collectBoolean(BooleanFunction<? super T> booleanFunction)
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
MutableByteBag |
collectByte(ByteFunction<? super T> byteFunction)
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
MutableCharBag |
collectChar(CharFunction<? super T> charFunction)
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
MutableDoubleBag |
collectDouble(DoubleFunction<? super T> doubleFunction)
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
MutableFloatBag |
collectFloat(FloatFunction<? super T> floatFunction)
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<V> MutableBag<V> |
collectIf(Predicate<? super T> predicate,
Function<? super T,? extends V> function)
Returns a new collection with the results of applying the specified function on each element of the source
collection, but only for those elements which return true upon evaluation of the predicate.
|
MutableIntBag |
collectInt(IntFunction<? super T> function)
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
MutableLongBag |
collectLong(LongFunction<? super T> longFunction)
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
MutableShortBag |
collectShort(ShortFunction<? super T> shortFunction)
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<P,V> MutableBag<V> |
collectWith(Function2<? super T,? super P,? extends V> function,
P parameter)
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
<V> MutableBag<V> |
flatCollect(Function<? super T,? extends Iterable<V>> function)
flatCollect is a special case of RichIterable.collect(Function) . |
void |
forEachWithOccurrences(ObjectIntProcedure<? super T> objectIntProcedure)
For each distinct item, with the number of occurrences, execute the specified procedure.
|
<V> MutableBagMultimap<V,T> |
groupBy(Function<? super T,? extends V> function)
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V> MutableBagMultimap<V,T> |
groupByEach(Function<? super T,? extends Iterable<V>> function)
Similar to
RichIterable.groupBy(Function) , except the result of evaluating function will return a collection of keys
for each value. |
MutableBag<T> |
newEmpty()
Creates a new empty mutable version of the same collection type.
|
int |
occurrencesOf(Object item)
The occurrences of a distinct item in the bag.
|
static <E,B extends MutableBag<E>> |
of(B bag)
This method will take a MutableBag and wrap it directly in a SynchronizedBag.
|
PartitionMutableBag<T> |
partition(Predicate<? super T> predicate)
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableBag<T> |
partitionWith(Predicate2<? super T,? super P> predicate,
P parameter)
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableBag<T> |
reject(Predicate<? super T> predicate)
Returns all elements of the source collection that return false when evaluating of the predicate.
|
<P> MutableBag<T> |
rejectWith(Predicate2<? super T,? super P> predicate,
P parameter)
Similar to
RichIterable.reject(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
boolean |
removeOccurrences(Object item,
int occurrences) |
MutableBag<T> |
select(Predicate<? super T> predicate)
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableBag<T> |
selectByOccurrences(IntPredicate predicate)
Returns all elements of the bag that have a number of occurrences that satisfy the predicate.
|
<S> MutableBag<S> |
selectInstancesOf(Class<S> clazz)
Returns all elements of the source collection that are instances of the Class
clazz . |
<P> MutableBag<T> |
selectWith(Predicate2<? super T,? super P> predicate,
P parameter)
Similar to
RichIterable.select(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
boolean |
setOccurrences(T item,
int occurrences) |
int |
sizeDistinct()
The size of the Bag when counting only distinct elements.
|
MutableBag<T> |
tap(Procedure<? super T> procedure)
Executes the Procedure for each element in the iterable and returns
this . |
ImmutableBag<T> |
toImmutable()
Converts the UnsortedBag to an ImmutableBag.
|
MutableMap<T,Integer> |
toMapOfItemToCount()
Converts the Bag to a Map of the Item type to its count as an Integer.
|
MutableList<ObjectIntPair<T>> |
topOccurrences(int count)
Returns the
count most frequently occurring items. |
String |
toStringOfItemToCount()
Returns a string representation of this bag.
|
MutableBag<T> |
with(T element)
This method allows mutable and fixed size collections the ability to add elements to their existing elements.
|
MutableBag<T> |
withAll(Iterable<? extends T> elements)
This method allows mutable and fixed size collections the ability to add multiple elements to their existing
elements.
|
MutableBag<T> |
without(T element)
This method allows mutable and fixed size collections the ability to remove elements from their existing elements.
|
MutableBag<T> |
withoutAll(Iterable<? extends T> elements)
This method allows mutable and fixed size collections the ability to remove multiple elements from their existing
elements.
|
<S> MutableBag<Pair<T,S>> |
zip(Iterable<S> that)
Deprecated.
in 6.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<T,Integer>> |
zipWithIndex()
Deprecated.
in 6.0. Use
OrderedIterable.zipWithIndex() instead. |
add, addAll, addAllIterable, aggregateBy, aggregateInPlaceBy, clear, injectIntoWith, remove, removeAll, removeAllIterable, removeIf, removeIfWith, retainAll, retainAllIterable, selectAndRejectWith
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, equals, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, groupByUniqueKey, hashCode, injectInto, injectInto, injectInto, injectInto, injectInto, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndex
addAllIterable, aggregateBy, aggregateInPlaceBy, groupByUniqueKey, injectIntoWith, removeAllIterable, removeIf, removeIfWith, retainAllIterable, selectAndRejectWith
add, addAll, clear, contains, containsAll, equals, hashCode, isEmpty, iterator, parallelStream, remove, removeAll, removeIf, retainAll, size, spliterator, stream, toArray, toArray
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, flatCollect, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, isEmpty, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndex
forEach, forEachWith, forEachWithIndex
public SynchronizedBag(MutableBag<T> bag, Object newLock)
public static <E,B extends MutableBag<E>> SynchronizedBag<E> of(B bag)
public MutableBag<T> with(T element)
MutableCollection
MutableCollectionIn the case oflist; list = list.with("1"); list = list.with("2"); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by with, and any
variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling add on itself.with
in interface MutableBag<T>
with
in interface MutableBagIterable<T>
with
in interface MutableCollection<T>
Collection.add(Object)
public MutableBag<T> without(T element)
MutableCollection
MutableCollectionIn the case oflist; list = list.without("1"); list = list.without("2"); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by without, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling remove on itself.without
in interface MutableBag<T>
without
in interface MutableBagIterable<T>
without
in interface MutableCollection<T>
Collection.remove(Object)
public MutableBag<T> withAll(Iterable<? extends T> elements)
MutableCollection
MutableCollectionIn the case oflist; list = list.withAll(FastList.newListWith("1", "2")); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by withAll, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling addAll on itself.withAll
in interface MutableBag<T>
withAll
in interface MutableBagIterable<T>
withAll
in interface MutableCollection<T>
Collection.addAll(Collection)
public MutableBag<T> withoutAll(Iterable<? extends T> elements)
MutableCollection
MutableCollectionIn the case oflist; list = list.withoutAll(FastList.newListWith("1", "2")); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by withoutAll,
and any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling removeAll on itself.withoutAll
in interface MutableBag<T>
withoutAll
in interface MutableBagIterable<T>
withoutAll
in interface MutableCollection<T>
Collection.removeAll(Collection)
public MutableBag<T> newEmpty()
MutableCollection
newEmpty
in interface MutableBag<T>
newEmpty
in interface MutableCollection<T>
public void addOccurrences(T item, int occurrences)
addOccurrences
in interface MutableBagIterable<T>
public boolean removeOccurrences(Object item, int occurrences)
removeOccurrences
in interface MutableBagIterable<T>
public boolean setOccurrences(T item, int occurrences)
setOccurrences
in interface MutableBagIterable<T>
public MutableMap<T,Integer> toMapOfItemToCount()
Bag
toMapOfItemToCount
in interface Bag<T>
toMapOfItemToCount
in interface MutableBag<T>
toMapOfItemToCount
in interface MutableBagIterable<T>
public MutableBag<T> selectByOccurrences(IntPredicate predicate)
Bag
selectByOccurrences
in interface Bag<T>
selectByOccurrences
in interface MutableBag<T>
selectByOccurrences
in interface MutableBagIterable<T>
selectByOccurrences
in interface UnsortedBag<T>
public MutableList<ObjectIntPair<T>> topOccurrences(int count)
Bag
count
most frequently occurring items.
In the event of a tie, all of the items with the number of occurrences that match the occurrences of the last
item will be returned.topOccurrences
in interface Bag<T>
topOccurrences
in interface MutableBagIterable<T>
public MutableList<ObjectIntPair<T>> bottomOccurrences(int count)
Bag
count
least frequently occurring items.
In the event of a tie, all of the items with the number of occurrences that match the occurrences of the last
item will be returned.bottomOccurrences
in interface Bag<T>
bottomOccurrences
in interface MutableBagIterable<T>
public void forEachWithOccurrences(ObjectIntProcedure<? super T> objectIntProcedure)
Bag
forEachWithOccurrences
in interface Bag<T>
public int occurrencesOf(Object item)
Bag
occurrencesOf
in interface Bag<T>
public int sizeDistinct()
Bag
sizeDistinct
in interface Bag<T>
public String toStringOfItemToCount()
Bag
Bag.forEachWithOccurrences(ObjectIntProcedure)
and Iterable.iterator()
. The element-count mappings are enclosed in braces ("{}"). Adjacent mappings are
separated by the characters ", " (comma and space). Each element-count mapping is rendered as the element
followed by an equals sign ("=") followed by the number of ooccurrences. Elements and are converted to
strings as by String.valueOf(Object)
.
The string representation is similar to AbstractMap.toString()
, not RichIterable.toString()
.
toStringOfItemToCount
in interface Bag<T>
public MutableBag<T> tap(Procedure<? super T> procedure)
RichIterable
this
.
Example using a Java 8 lambda expression:
RichIterable<Person> tapped = people.tap(person -> LOGGER.info(person.getName()));
Example using an anonymous inner class:
RichIterable<Person> tapped = people.tap(new Procedure() { public void value(Person person) { LOGGER.info(person.getName()); } });
tap
in interface Bag<T>
tap
in interface MutableBag<T>
tap
in interface MutableBagIterable<T>
tap
in interface MutableCollection<T>
tap
in interface RichIterable<T>
RichIterable.each(Procedure)
,
InternalIterable.forEach(Procedure)
public MutableBag<T> select(Predicate<? super T> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected = people.select(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getCity().equals("London"); } });
select
in interface Bag<T>
select
in interface MutableBag<T>
select
in interface MutableBagIterable<T>
select
in interface UnsortedBag<T>
select
in interface MutableCollection<T>
select
in interface RichIterable<T>
public <P> MutableBag<T> selectWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterable
RichIterable.select(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected = people.selectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() >= age; } }, Integer.valueOf(18));
selectWith
in interface Bag<T>
selectWith
in interface MutableBag<T>
selectWith
in interface MutableBagIterable<T>
selectWith
in interface UnsortedBag<T>
selectWith
in interface MutableCollection<T>
selectWith
in interface RichIterable<T>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public MutableBag<T> reject(Predicate<? super T> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected = people.reject(new Predicate<Person>() { public boolean accept(Person person) { return person.person.getLastName().equals("Smith"); } });
reject
in interface Bag<T>
reject
in interface MutableBag<T>
reject
in interface MutableBagIterable<T>
reject
in interface UnsortedBag<T>
reject
in interface MutableCollection<T>
reject
in interface RichIterable<T>
predicate
- a Predicate
to use as the reject criteriaPredicate.accept(Object)
method to evaluate to falsepublic <P> MutableBag<T> rejectWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterable
RichIterable.reject(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected = people.rejectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() < age; } }, Integer.valueOf(18));
rejectWith
in interface Bag<T>
rejectWith
in interface MutableBag<T>
rejectWith
in interface MutableBagIterable<T>
rejectWith
in interface UnsortedBag<T>
rejectWith
in interface MutableCollection<T>
rejectWith
in interface RichIterable<T>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public PartitionMutableBag<T> partition(Predicate<? super T> predicate)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getState().getName().equals("New York"); } });
partition
in interface Bag<T>
partition
in interface MutableBag<T>
partition
in interface MutableBagIterable<T>
partition
in interface UnsortedBag<T>
partition
in interface MutableCollection<T>
partition
in interface RichIterable<T>
public <P> PartitionMutableBag<T> partitionWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith(new Predicate2<Person, String>() { public boolean accept(Person person, String state) { return person.getAddress().getState().getName().equals(state); } }, "New York");
partitionWith
in interface Bag<T>
partitionWith
in interface MutableBag<T>
partitionWith
in interface MutableBagIterable<T>
partitionWith
in interface MutableCollection<T>
partitionWith
in interface RichIterable<T>
public MutableBooleanBag collectBoolean(BooleanFunction<? super T> booleanFunction)
RichIterable
boolean
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses = people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses = people.collectBoolean(new BooleanFunction<Person>() { public boolean booleanValueOf(Person person) { return person.hasDrivingLicense(); } });
collectBoolean
in interface MutableBag<T>
collectBoolean
in interface UnsortedBag<T>
collectBoolean
in interface MutableCollection<T>
collectBoolean
in interface RichIterable<T>
public MutableByteBag collectByte(ByteFunction<? super T> byteFunction)
RichIterable
byte
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes = people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes = people.collectByte(new ByteFunction<Person>() { public byte byteValueOf(Person person) { return person.getCode(); } });
collectByte
in interface MutableBag<T>
collectByte
in interface UnsortedBag<T>
collectByte
in interface MutableCollection<T>
collectByte
in interface RichIterable<T>
public MutableCharBag collectChar(CharFunction<? super T> charFunction)
RichIterable
char
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars = people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars = people.collectChar(new CharFunction<Person>() { public char charValueOf(Person person) { return person.getMiddleInitial(); } });
collectChar
in interface MutableBag<T>
collectChar
in interface UnsortedBag<T>
collectChar
in interface MutableCollection<T>
collectChar
in interface RichIterable<T>
public MutableDoubleBag collectDouble(DoubleFunction<? super T> doubleFunction)
RichIterable
double
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles = people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles = people.collectDouble(new DoubleFunction<Person>() { public double doubleValueOf(Person person) { return person.getMilesFromNorthPole(); } });
collectDouble
in interface MutableBag<T>
collectDouble
in interface UnsortedBag<T>
collectDouble
in interface MutableCollection<T>
collectDouble
in interface RichIterable<T>
public MutableFloatBag collectFloat(FloatFunction<? super T> floatFunction)
RichIterable
float
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats = people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats = people.collectFloat(new FloatFunction<Person>() { public float floatValueOf(Person person) { return person.getHeightInInches(); } });
collectFloat
in interface MutableBag<T>
collectFloat
in interface UnsortedBag<T>
collectFloat
in interface MutableCollection<T>
collectFloat
in interface RichIterable<T>
public MutableIntBag collectInt(IntFunction<? super T> function)
RichIterable
int
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints = people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints = people.collectInt(new IntFunction<Person>() { public int intValueOf(Person person) { return person.getAge(); } });
collectInt
in interface MutableBag<T>
collectInt
in interface UnsortedBag<T>
collectInt
in interface MutableCollection<T>
collectInt
in interface RichIterable<T>
public MutableLongBag collectLong(LongFunction<? super T> longFunction)
RichIterable
long
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs = people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs = people.collectLong(new LongFunction<Person>() { public long longValueOf(Person person) { return person.getGuid(); } });
collectLong
in interface MutableBag<T>
collectLong
in interface UnsortedBag<T>
collectLong
in interface MutableCollection<T>
collectLong
in interface RichIterable<T>
public MutableShortBag collectShort(ShortFunction<? super T> shortFunction)
RichIterable
short
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts = people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts = people.collectShort(new ShortFunction<Person>() { public short shortValueOf(Person person) { return person.getNumberOfJunkMailItemsReceivedPerMonth(); } });
collectShort
in interface MutableBag<T>
collectShort
in interface UnsortedBag<T>
collectShort
in interface MutableCollection<T>
collectShort
in interface RichIterable<T>
public <S> MutableBag<S> selectInstancesOf(Class<S> clazz)
RichIterable
clazz
.selectInstancesOf
in interface Bag<T>
selectInstancesOf
in interface MutableBag<T>
selectInstancesOf
in interface MutableBagIterable<T>
selectInstancesOf
in interface UnsortedBag<T>
selectInstancesOf
in interface MutableCollection<T>
selectInstancesOf
in interface RichIterable<T>
public <V> MutableBag<V> collect(Function<? super T,? extends V> function)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<String> names = people.collect(person -> person.getFirstName() + " " + person.getLastName());
Example using an anonymous inner class:
RichIterable<String> names = people.collect(new Function<Person, String>() { public String valueOf(Person person) { return person.getFirstName() + " " + person.getLastName(); } });
collect
in interface MutableBag<T>
collect
in interface UnsortedBag<T>
collect
in interface MutableCollection<T>
collect
in interface RichIterable<T>
@Deprecated public MutableSet<Pair<T,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex()
instead.RichIterable
RichIterable
with its indices.zipWithIndex
in interface Bag<T>
zipWithIndex
in interface MutableBag<T>
zipWithIndex
in interface MutableBagIterable<T>
zipWithIndex
in interface UnsortedBag<T>
zipWithIndex
in interface MutableCollection<T>
zipWithIndex
in interface RichIterable<T>
RichIterable
containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)
public <P,V> MutableBag<V> collectWith(Function2<? super T,? super P,? extends V> function, P parameter)
RichIterable
RichIterable.collect(Function)
with a Function2
and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers = Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction = new Function2<Integer, Integer, Integer>() { public Integer value(Integer each, Integer parameter) { return each + parameter; } }; RichIterable<Integer> integers = Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith
in interface MutableBag<T>
collectWith
in interface UnsortedBag<T>
collectWith
in interface MutableCollection<T>
collectWith
in interface RichIterable<T>
function
- A Function2
to use as the collect transformation functionparameter
- A parameter to pass in for evaluation of the second argument P
in function
RichIterable
that contains the transformed elements returned by Function2.value(Object, Object)
RichIterable.collect(Function)
public <V> MutableBag<V> collectIf(Predicate<? super T> predicate, Function<? super T,? extends V> function)
RichIterable
Example using a Java 8 lambda and method reference:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(e -> e != null, Object::toString);
Example using Predicates factory:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString());
collectIf
in interface MutableBag<T>
collectIf
in interface UnsortedBag<T>
collectIf
in interface MutableCollection<T>
collectIf
in interface RichIterable<T>
public <V> MutableBag<V> flatCollect(Function<? super T,? extends Iterable<V>> function)
RichIterable
flatCollect
is a special case of RichIterable.collect(Function)
. With collect
, when the Function
returns
a collection, the result is a collection of collections. flatCollect
outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person
class, and each Person
has a list of Address
objects. Take the following Function
:
Function<Person, List<Address>> addressFunction = Person::getAddresses; MutableList<Person> people = ...;Using
collect
returns a collection of collections of addresses.
MutableList<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect
returns a single flattened list of addresses.
MutableList<Address> addresses = people.flatCollect(addressFunction);
flatCollect
in interface MutableBag<T>
flatCollect
in interface UnsortedBag<T>
flatCollect
in interface MutableCollection<T>
flatCollect
in interface RichIterable<T>
function
- The Function
to applyfunction
public <V> MutableBagMultimap<V,T> groupBy(Function<? super T,? extends V> function)
RichIterable
Example using a Java 8 method reference:
Multimap<String, Person> peopleByLastName = people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName = people.groupBy(new Function<Person, String>() { public String value(Person person) { return person.getLastName(); } });
groupBy
in interface Bag<T>
groupBy
in interface MutableBag<T>
groupBy
in interface MutableBagIterable<T>
groupBy
in interface UnsortedBag<T>
groupBy
in interface MutableCollection<T>
groupBy
in interface RichIterable<T>
public <V> MutableBagMultimap<V,T> groupByEach(Function<? super T,? extends Iterable<V>> function)
RichIterable
RichIterable.groupBy(Function)
, except the result of evaluating function will return a collection of keys
for each value.groupByEach
in interface Bag<T>
groupByEach
in interface MutableBag<T>
groupByEach
in interface MutableBagIterable<T>
groupByEach
in interface UnsortedBag<T>
groupByEach
in interface MutableCollection<T>
groupByEach
in interface RichIterable<T>
@Deprecated public <S> MutableBag<Pair<T,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable)
instead.RichIterable
RichIterable
formed from this RichIterable
and another RichIterable
by
combining corresponding elements in pairs. If one of the two RichIterable
s is longer than the other, its
remaining elements are ignored.zip
in interface MutableBag<T>
zip
in interface UnsortedBag<T>
zip
in interface MutableCollection<T>
zip
in interface RichIterable<T>
S
- the type of the second half of the returned pairsthat
- The RichIterable
providing the second half of each result pairRichIterable
containing pairs consisting of corresponding elements of this RichIterable
and that. The length of the returned RichIterable
is the minimum of the lengths of
this RichIterable
and that.public MutableBag<T> asUnmodifiable()
MutableCollection
The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.
The returned collection will be serializable if this collection is serializable.
asUnmodifiable
in interface MutableBag<T>
asUnmodifiable
in interface MutableCollection<T>
public MutableBag<T> asSynchronized()
MutableCollection
It is imperative that the user manually synchronize on the returned collection when iterating over it using the standard JDK iterator or JDK 5 for loop.
MutableCollection collection = myCollection.asSynchronized(); ... synchronized(collection) { Iterator i = c.iterator(); // Must be in the synchronized block while (i.hasNext()) foo(i.next()); }Failure to follow this advice may result in non-deterministic behavior.
The preferred way of iterating over a synchronized collection is to use the collection.forEach() method which is properly synchronized internally.
MutableCollection collection = myCollection.asSynchronized(); ... collection.forEach(new Procedure() { public void value(Object each) { ... } });
The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.
The returned collection will be serializable if this collection is serializable.
asSynchronized
in interface MutableBag<T>
asSynchronized
in interface MutableCollection<T>
public ImmutableBag<T> toImmutable()
UnsortedBag
toImmutable
in interface Bag<T>
toImmutable
in interface UnsortedBag<T>
toImmutable
in interface MutableCollection<T>
Copyright © 2004–2016. All rights reserved.