public final class SetAdapter<T> extends AbstractCollectionAdapter<T> implements Serializable, MutableSet<T>
To create a new wrapper around an existing Set instance, use the adapt(Set) factory method.
| Modifier and Type | Method and Description |
|---|---|
static <E> MutableSet<E> |
adapt(Set<E> set) |
ParallelUnsortedSetIterable<T> |
asParallel(ExecutorService executorService,
int batchSize)
Returns a parallel iterable of this SetIterable.
|
MutableSet<T> |
asSynchronized()
Returns a synchronized (thread-safe) collection backed by this collection.
|
MutableSet<T> |
asUnmodifiable()
Returns an unmodifable view of the set.
|
<B> LazyIterable<Pair<T,B>> |
cartesianProduct(SetIterable<B> set)
Returns the set whose members are all possible ordered pairs (a, b) where a is a member of
this and b is a
member of set. |
MutableSet<T> |
clone() |
<V> MutableSet<V> |
collect(Function<? super T,? extends V> function)
Returns a new MutableCollection with the results of applying the specified function to each element of the source
collection.
|
MutableBooleanSet |
collectBoolean(BooleanFunction<? super T> booleanFunction)
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
MutableByteSet |
collectByte(ByteFunction<? super T> byteFunction)
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
MutableCharSet |
collectChar(CharFunction<? super T> charFunction)
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
MutableDoubleSet |
collectDouble(DoubleFunction<? super T> doubleFunction)
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
MutableFloatSet |
collectFloat(FloatFunction<? super T> floatFunction)
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<V> MutableSet<V> |
collectIf(Predicate<? super T> predicate,
Function<? super T,? extends V> function)
Returns a new MutableCollection with the results of applying the specified function to each element of the source
collection, but only for elements that evaluate to true for the specified predicate.
|
MutableIntSet |
collectInt(IntFunction<? super T> intFunction)
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
MutableLongSet |
collectLong(LongFunction<? super T> longFunction)
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
MutableShortSet |
collectShort(ShortFunction<? super T> shortFunction)
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<P,V> MutableSet<V> |
collectWith(Function2<? super T,? super P,? extends V> function,
P parameter)
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
boolean |
contains(Object o)
Returns true if the iterable has an element which responds true to element.equals(object).
|
boolean |
containsAll(Collection<?> collection)
Returns true if all elements in source are contained in this collection.
|
MutableSet<T> |
difference(SetIterable<? extends T> subtrahendSet)
Returns the set of all members of
this that are not members of subtrahendSet. |
<R extends Set<T>> |
differenceInto(SetIterable<? extends T> subtrahendSet,
R targetSet)
Same as
SetIterable.difference(SetIterable) but adds all the objects to targetSet and returns it. |
boolean |
equals(Object obj)
Follows the same general contract as
Set.equals(Object). |
<V> MutableSet<V> |
flatCollect(Function<? super T,? extends Iterable<V>> function)
flatCollect is a special case of RichIterable.collect(Function). |
<V> UnifiedSetMultimap<V,T> |
groupBy(Function<? super T,? extends V> function)
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V> UnifiedSetMultimap<V,T> |
groupByEach(Function<? super T,? extends Iterable<V>> function)
Similar to
RichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value. |
int |
hashCode()
Follows the same general contract as
Set.hashCode(). |
MutableSet<T> |
intersect(SetIterable<? extends T> set)
Returns the set of all objects that are members of both
this and set. |
<R extends Set<T>> |
intersectInto(SetIterable<? extends T> set,
R targetSet)
Same as
SetIterable.intersect(SetIterable) but adds all the objects to targetSet and returns it. |
boolean |
isProperSubsetOf(SetIterable<? extends T> candidateSuperset)
Returns true if all the members of
this are also members of candidateSuperset and the
two sets are not equal. |
boolean |
isSubsetOf(SetIterable<? extends T> candidateSuperset)
Returns true if all the members of
this are also members of candidateSuperset. |
MutableSet<T> |
newEmpty()
Deprecated.
use
UnifiedSet.newSet() instead (inlineable) |
PartitionMutableSet<T> |
partition(Predicate<? super T> predicate)
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableSet<T> |
partitionWith(Predicate2<? super T,? super P> predicate,
P parameter)
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableSet<UnsortedSetIterable<T>> |
powerSet()
Returns the set whose members are all possible subsets of
this. |
MutableSet<T> |
reject(Predicate<? super T> predicate)
Returns a MutableCollection with all elements that evaluate to false for the specified predicate.
|
<P> MutableSet<T> |
rejectWith(Predicate2<? super T,? super P> predicate,
P parameter)
Returns a MutableCollection with all elements that evaluate to false for the specified predicate2 and parameter.
|
boolean |
removeAllIterable(Iterable<?> iterable) |
MutableSet<T> |
select(Predicate<? super T> predicate)
Returns a MutableCollection with all elements that evaluate to true for the specified predicate.
|
<S> MutableSet<S> |
selectInstancesOf(Class<S> clazz)
Returns all elements of the source collection that are instances of the Class
clazz. |
<P> MutableSet<T> |
selectWith(Predicate2<? super T,? super P> predicate,
P parameter)
Returns a MutableCollection with all elements that evaluate to true for the specified predicate2 and parameter.
|
MutableSet<T> |
symmetricDifference(SetIterable<? extends T> setB)
Returns the set of all objects that are a member of exactly one of
this and setB (elements which
are in one of the sets, but not in both). |
<R extends Set<T>> |
symmetricDifferenceInto(SetIterable<? extends T> set,
R targetSet)
Same as
SetIterable.symmetricDifference(SetIterable) but adds all the objects to targetSet and returns it. |
MutableSet<T> |
tap(Procedure<? super T> procedure)
Executes the Procedure for each element in the iterable and returns
this. |
ImmutableSet<T> |
toImmutable()
Returns an immutable copy of this set.
|
MutableSet<T> |
union(SetIterable<? extends T> set)
Returns the set of all objects that are a member of
this or set or both. |
<R extends Set<T>> |
unionInto(SetIterable<? extends T> set,
R targetSet)
Same as
SetIterable.union(SetIterable) but adds all the objects to targetSet and returns it. |
SetAdapter<T> |
with(T... elements) |
SetAdapter<T> |
with(T element)
This method allows mutable and fixed size collections the ability to add elements to their existing elements.
|
SetAdapter<T> |
with(T element1,
T element2) |
SetAdapter<T> |
with(T element1,
T element2,
T element3) |
SetAdapter<T> |
withAll(Iterable<? extends T> elements)
This method allows mutable and fixed size collections the ability to add multiple elements to their existing
elements.
|
SetAdapter<T> |
without(T element)
This method allows mutable and fixed size collections the ability to remove elements from their existing elements.
|
SetAdapter<T> |
withoutAll(Iterable<? extends T> elements)
This method allows mutable and fixed size collections the ability to remove multiple elements from their existing
elements.
|
<S> MutableSet<Pair<T,S>> |
zip(Iterable<S> that)
Deprecated.
in 6.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<T,Integer>> |
zipWithIndex()
Deprecated.
in 6.0. Use
OrderedIterable.zipWithIndex() instead. |
add, addAll, addAllIterable, aggregateBy, aggregateInPlaceBy, allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, clear, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, injectIntoWith, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, remove, removeAll, removeIf, removeIfWith, retainAll, retainAllIterable, select, selectAndRejectWith, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndexaddAllIterable, aggregateBy, aggregateInPlaceBy, groupByUniqueKey, injectIntoWith, removeIf, removeIfWith, retainAllIterable, selectAndRejectWithallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, flatCollect, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, isEmpty, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndexforEach, forEachWith, forEachWithIndexadd, addAll, clear, isEmpty, iterator, remove, removeAll, retainAll, size, spliterator, toArray, toArrayparallelStream, removeIf, streampublic MutableSet<T> asUnmodifiable()
MutableSetasUnmodifiable in interface MutableCollection<T>asUnmodifiable in interface MutableSet<T>public MutableSet<T> asSynchronized()
MutableCollectionIt is imperative that the user manually synchronize on the returned collection when iterating over it using the standard JDK iterator or JDK 5 for loop.
MutableCollection collection = myCollection.asSynchronized();
...
synchronized(collection)
{
Iterator i = c.iterator(); // Must be in the synchronized block
while (i.hasNext())
foo(i.next());
}
Failure to follow this advice may result in non-deterministic behavior.
The preferred way of iterating over a synchronized collection is to use the collection.forEach() method which is properly synchronized internally.
MutableCollection collection = myCollection.asSynchronized();
...
collection.forEach(new Procedure()
{
public void value(Object each)
{
...
}
});
The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.
The returned collection will be serializable if this collection is serializable.
asSynchronized in interface MutableCollection<T>asSynchronized in interface MutableSet<T>public ImmutableSet<T> toImmutable()
MutableSetThe returned set will be Serializable if this set is Serializable.
toImmutable in interface MutableCollection<T>toImmutable in interface MutableSet<T>toImmutable in interface SetIterable<T>toImmutable in interface UnsortedSetIterable<T>public static <E> MutableSet<E> adapt(Set<E> set)
public MutableSet<T> clone()
clone in interface MutableSet<T>clone in class Objectpublic boolean contains(Object o)
RichIterablecontains in interface Collection<T>contains in interface Set<T>contains in interface RichIterable<T>contains in class AbstractCollectionAdapter<T>public boolean containsAll(Collection<?> collection)
RichIterablecontainsAll in interface Collection<T>containsAll in interface Set<T>containsAll in interface RichIterable<T>containsAll in class AbstractCollectionAdapter<T>Collection.containsAll(Collection)public boolean equals(Object obj)
SetIterableSet.equals(Object).public int hashCode()
SetIterableSet.hashCode().public SetAdapter<T> with(T element)
MutableCollection
MutableCollectionIn the case oflist; list = list.with("1"); list = list.with("2"); return list;
FixedSizeCollection a new instance of MutableCollection will be returned by with, and any
variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling add on itself.with in interface MutableCollection<T>with in interface MutableSet<T>Collection.add(Object)public SetAdapter<T> with(T element1, T element2)
public SetAdapter<T> with(T element1, T element2, T element3)
public SetAdapter<T> with(T... elements)
public SetAdapter<T> without(T element)
MutableCollection
MutableCollectionIn the case oflist; list = list.without("1"); list = list.without("2"); return list;
FixedSizeCollection a new instance of MutableCollection will be returned by without, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling remove on itself.without in interface MutableCollection<T>without in interface MutableSet<T>Collection.remove(Object)public SetAdapter<T> withAll(Iterable<? extends T> elements)
MutableCollection
MutableCollectionIn the case oflist; list = list.withAll(FastList.newListWith("1", "2")); return list;
FixedSizeCollection a new instance of MutableCollection will be returned by withAll, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling addAll on itself.withAll in interface MutableCollection<T>withAll in interface MutableSet<T>Collection.addAll(Collection)public SetAdapter<T> withoutAll(Iterable<? extends T> elements)
MutableCollection
MutableCollectionIn the case oflist; list = list.withoutAll(FastList.newListWith("1", "2")); return list;
FixedSizeCollection a new instance of MutableCollection will be returned by withoutAll,
and any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling removeAll on itself.withoutAll in interface MutableCollection<T>withoutAll in interface MutableSet<T>Collection.removeAll(Collection)@Deprecated public MutableSet<T> newEmpty()
UnifiedSet.newSet() instead (inlineable)MutableCollectionnewEmpty in interface MutableCollection<T>newEmpty in interface MutableSet<T>public MutableSet<T> tap(Procedure<? super T> procedure)
RichIterablethis.
Example using a Java 8 lambda expression:
RichIterable<Person> tapped =
people.tap(person -> LOGGER.info(person.getName()));
Example using an anonymous inner class:
RichIterable<Person> tapped =
people.tap(new Procedure()
{
public void value(Person person)
{
LOGGER.info(person.getName());
}
});
tap in interface MutableCollection<T>tap in interface RichIterable<T>tap in interface MutableSet<T>tap in interface MutableSetIterable<T>tap in class AbstractCollectionAdapter<T>RichIterable.each(Procedure),
InternalIterable.forEach(Procedure)public MutableSet<T> select(Predicate<? super T> predicate)
MutableCollection
e.g.
return people.select(new Predicate<Person>()
{
public boolean value(Person person)
{
return person.getAddress().getCity().equals("Metuchen");
}
});
select in interface MutableCollection<T>select in interface RichIterable<T>select in interface MutableSet<T>select in interface MutableSetIterable<T>select in interface SetIterable<T>select in interface UnsortedSetIterable<T>select in class AbstractCollectionAdapter<T>public MutableSet<T> reject(Predicate<? super T> predicate)
MutableCollection
e.g.
return people.reject(new Predicate<Person>()
{
public boolean value(Person person)
{
return person.person.getLastName().equals("Smith");
}
});
e.g.
return people.reject(Predicates.attributeEqual("lastName", "Smith"));
reject in interface MutableCollection<T>reject in interface RichIterable<T>reject in interface MutableSet<T>reject in interface MutableSetIterable<T>reject in interface SetIterable<T>reject in interface UnsortedSetIterable<T>reject in class AbstractCollectionAdapter<T>predicate - a Predicate to use as the reject criteriaPredicate.accept(Object) method to evaluate to falsepublic PartitionMutableSet<T> partition(Predicate<? super T> predicate)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getState().getName().equals("New York");
}
});
partition in interface MutableCollection<T>partition in interface RichIterable<T>partition in interface MutableSet<T>partition in interface MutableSetIterable<T>partition in interface SetIterable<T>partition in class AbstractCollectionAdapter<T>public <P> PartitionMutableSet<T> partitionWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith(new Predicate2<Person, String>()
{
public boolean accept(Person person, String state)
{
return person.getAddress().getState().getName().equals(state);
}
}, "New York");
partitionWith in interface MutableCollection<T>partitionWith in interface RichIterable<T>partitionWith in interface MutableSet<T>partitionWith in interface MutableSetIterable<T>partitionWith in interface SetIterable<T>partitionWith in class AbstractCollectionAdapter<T>public <S> MutableSet<S> selectInstancesOf(Class<S> clazz)
RichIterableclazz.selectInstancesOf in interface MutableCollection<T>selectInstancesOf in interface RichIterable<T>selectInstancesOf in interface MutableSet<T>selectInstancesOf in interface MutableSetIterable<T>selectInstancesOf in interface SetIterable<T>selectInstancesOf in interface UnsortedSetIterable<T>selectInstancesOf in class AbstractCollectionAdapter<T>public <V> MutableSet<V> collect(Function<? super T,? extends V> function)
MutableCollection
e.g.
return people.collect(new Function<Person, String>()
{
public String value(Person person)
{
return person.getFirstName() + " " + person.getLastName();
}
});
collect in interface MutableCollection<T>collect in interface RichIterable<T>collect in interface MutableSet<T>collect in interface UnsortedSetIterable<T>collect in class AbstractCollectionAdapter<T>public MutableBooleanSet collectBoolean(BooleanFunction<? super T> booleanFunction)
RichIterableboolean iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses =
people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses =
people.collectBoolean(new BooleanFunction<Person>()
{
public boolean booleanValueOf(Person person)
{
return person.hasDrivingLicense();
}
});
collectBoolean in interface MutableCollection<T>collectBoolean in interface RichIterable<T>collectBoolean in interface MutableSet<T>collectBoolean in interface UnsortedSetIterable<T>collectBoolean in class AbstractCollectionAdapter<T>public MutableByteSet collectByte(ByteFunction<? super T> byteFunction)
RichIterablebyte iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes =
people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes =
people.collectByte(new ByteFunction<Person>()
{
public byte byteValueOf(Person person)
{
return person.getCode();
}
});
collectByte in interface MutableCollection<T>collectByte in interface RichIterable<T>collectByte in interface MutableSet<T>collectByte in interface UnsortedSetIterable<T>collectByte in class AbstractCollectionAdapter<T>public MutableCharSet collectChar(CharFunction<? super T> charFunction)
RichIterablechar iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars =
people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars =
people.collectChar(new CharFunction<Person>()
{
public char charValueOf(Person person)
{
return person.getMiddleInitial();
}
});
collectChar in interface MutableCollection<T>collectChar in interface RichIterable<T>collectChar in interface MutableSet<T>collectChar in interface UnsortedSetIterable<T>collectChar in class AbstractCollectionAdapter<T>public MutableDoubleSet collectDouble(DoubleFunction<? super T> doubleFunction)
RichIterabledouble iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles =
people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles =
people.collectDouble(new DoubleFunction<Person>()
{
public double doubleValueOf(Person person)
{
return person.getMilesFromNorthPole();
}
});
collectDouble in interface MutableCollection<T>collectDouble in interface RichIterable<T>collectDouble in interface MutableSet<T>collectDouble in interface UnsortedSetIterable<T>collectDouble in class AbstractCollectionAdapter<T>public MutableFloatSet collectFloat(FloatFunction<? super T> floatFunction)
RichIterablefloat iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats =
people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats =
people.collectFloat(new FloatFunction<Person>()
{
public float floatValueOf(Person person)
{
return person.getHeightInInches();
}
});
collectFloat in interface MutableCollection<T>collectFloat in interface RichIterable<T>collectFloat in interface MutableSet<T>collectFloat in interface UnsortedSetIterable<T>collectFloat in class AbstractCollectionAdapter<T>public MutableIntSet collectInt(IntFunction<? super T> intFunction)
RichIterableint iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints =
people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints =
people.collectInt(new IntFunction<Person>()
{
public int intValueOf(Person person)
{
return person.getAge();
}
});
collectInt in interface MutableCollection<T>collectInt in interface RichIterable<T>collectInt in interface MutableSet<T>collectInt in interface UnsortedSetIterable<T>collectInt in class AbstractCollectionAdapter<T>public MutableLongSet collectLong(LongFunction<? super T> longFunction)
RichIterablelong iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs =
people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs =
people.collectLong(new LongFunction<Person>()
{
public long longValueOf(Person person)
{
return person.getGuid();
}
});
collectLong in interface MutableCollection<T>collectLong in interface RichIterable<T>collectLong in interface MutableSet<T>collectLong in interface UnsortedSetIterable<T>collectLong in class AbstractCollectionAdapter<T>public MutableShortSet collectShort(ShortFunction<? super T> shortFunction)
RichIterableshort iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts =
people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts =
people.collectShort(new ShortFunction<Person>()
{
public short shortValueOf(Person person)
{
return person.getNumberOfJunkMailItemsReceivedPerMonth();
}
});
collectShort in interface MutableCollection<T>collectShort in interface RichIterable<T>collectShort in interface MutableSet<T>collectShort in interface UnsortedSetIterable<T>collectShort in class AbstractCollectionAdapter<T>public <V> MutableSet<V> flatCollect(Function<? super T,? extends Iterable<V>> function)
RichIterableflatCollect is a special case of RichIterable.collect(Function). With collect, when the Function returns
a collection, the result is a collection of collections. flatCollect outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person class, and each Person has a list of Address objects. Take the following Function:
Function<Person, List<Address>> addressFunction = Person::getAddresses; MutableList<Person> people = ...;Using
collect returns a collection of collections of addresses.
MutableList<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect returns a single flattened list of addresses.
MutableList<Address> addresses = people.flatCollect(addressFunction);
flatCollect in interface MutableCollection<T>flatCollect in interface RichIterable<T>flatCollect in interface MutableSet<T>flatCollect in interface UnsortedSetIterable<T>flatCollect in class AbstractCollectionAdapter<T>function - The Function to applyfunctionpublic <V> MutableSet<V> collectIf(Predicate<? super T> predicate, Function<? super T,? extends V> function)
MutableCollection
e.g. Lists.mutable.of().with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString())
collectIf in interface MutableCollection<T>collectIf in interface RichIterable<T>collectIf in interface MutableSet<T>collectIf in interface UnsortedSetIterable<T>collectIf in class AbstractCollectionAdapter<T>public <V> UnifiedSetMultimap<V,T> groupBy(Function<? super T,? extends V> function)
RichIterableExample using a Java 8 method reference:
Multimap<String, Person> peopleByLastName =
people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName =
people.groupBy(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getLastName();
}
});
groupBy in interface MutableCollection<T>groupBy in interface RichIterable<T>groupBy in interface MutableSet<T>groupBy in interface MutableSetIterable<T>groupBy in interface UnsortedSetIterable<T>groupBy in class AbstractCollectionAdapter<T>public <V> UnifiedSetMultimap<V,T> groupByEach(Function<? super T,? extends Iterable<V>> function)
RichIterableRichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value.groupByEach in interface MutableCollection<T>groupByEach in interface RichIterable<T>groupByEach in interface MutableSet<T>groupByEach in interface MutableSetIterable<T>groupByEach in interface UnsortedSetIterable<T>groupByEach in class AbstractCollectionAdapter<T>public <P> MutableSet<T> selectWith(Predicate2<? super T,? super P> predicate, P parameter)
MutableCollection
e.g. return integers.selectWith(PredicatesLite.equal(), Integer.valueOf(5));
selectWith in interface MutableCollection<T>selectWith in interface RichIterable<T>selectWith in interface MutableSet<T>selectWith in interface MutableSetIterable<T>selectWith in interface SetIterable<T>selectWith in interface UnsortedSetIterable<T>selectWith in class AbstractCollectionAdapter<T>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public <P> MutableSet<T> rejectWith(Predicate2<? super T,? super P> predicate, P parameter)
MutableCollection
e.g. return integers.rejectWith(PredicatesLite.equal(), Integer.valueOf(5));
rejectWith in interface MutableCollection<T>rejectWith in interface RichIterable<T>rejectWith in interface MutableSet<T>rejectWith in interface MutableSetIterable<T>rejectWith in interface SetIterable<T>rejectWith in interface UnsortedSetIterable<T>rejectWith in class AbstractCollectionAdapter<T>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public <P,V> MutableSet<V> collectWith(Function2<? super T,? super P,? extends V> function, P parameter)
RichIterableRichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction =
new Function2<Integer, Integer, Integer>()
{
public Integer value(Integer each, Integer parameter)
{
return each + parameter;
}
};
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith in interface MutableCollection<T>collectWith in interface RichIterable<T>collectWith in interface MutableSet<T>collectWith in interface UnsortedSetIterable<T>collectWith in class AbstractCollectionAdapter<T>function - A Function2 to use as the collect transformation functionparameter - A parameter to pass in for evaluation of the second argument P in functionRichIterable that contains the transformed elements returned by Function2.value(Object, Object)RichIterable.collect(Function)@Deprecated public <S> MutableSet<Pair<T,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable) instead.RichIterableRichIterable formed from this RichIterable and another RichIterable by
combining corresponding elements in pairs. If one of the two RichIterables is longer than the other, its
remaining elements are ignored.zip in interface MutableCollection<T>zip in interface RichIterable<T>zip in interface MutableSet<T>zip in interface MutableSetIterable<T>zip in interface UnsortedSetIterable<T>zip in class AbstractCollectionAdapter<T>S - the type of the second half of the returned pairsthat - The RichIterable providing the second half of each result pairRichIterable containing pairs consisting of corresponding elements of this RichIterable and that. The length of the returned RichIterable is the minimum of the lengths of
this RichIterable and that.@Deprecated public MutableSet<Pair<T,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex() instead.RichIterableRichIterable with its indices.zipWithIndex in interface MutableCollection<T>zipWithIndex in interface RichIterable<T>zipWithIndex in interface MutableSet<T>zipWithIndex in interface MutableSetIterable<T>zipWithIndex in interface SetIterable<T>zipWithIndex in interface UnsortedSetIterable<T>zipWithIndex in class AbstractCollectionAdapter<T>RichIterable containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)public boolean removeAllIterable(Iterable<?> iterable)
removeAllIterable in interface MutableCollection<T>removeAllIterable in class AbstractCollectionAdapter<T>Collection.removeAll(Collection)public MutableSet<T> union(SetIterable<? extends T> set)
SetIterablethis or set or both. The union of [1, 2, 3]
and [2, 3, 4] is the set [1, 2, 3, 4]. If equal elements appear in both sets, then the output will contain the
copy from this.union in interface MutableSet<T>union in interface SetIterable<T>union in interface UnsortedSetIterable<T>public <R extends Set<T>> R unionInto(SetIterable<? extends T> set, R targetSet)
SetIterableSetIterable.union(SetIterable) but adds all the objects to targetSet and returns it.unionInto in interface SetIterable<T>public MutableSet<T> intersect(SetIterable<? extends T> set)
SetIterablethis and set. The intersection of
[1, 2, 3] and [2, 3, 4] is the set [2, 3]. The output will contain instances from this, not set.intersect in interface MutableSet<T>intersect in interface SetIterable<T>intersect in interface UnsortedSetIterable<T>public <R extends Set<T>> R intersectInto(SetIterable<? extends T> set, R targetSet)
SetIterableSetIterable.intersect(SetIterable) but adds all the objects to targetSet and returns it.intersectInto in interface SetIterable<T>public MutableSet<T> difference(SetIterable<? extends T> subtrahendSet)
SetIterablethis that are not members of subtrahendSet. The difference of
[1, 2, 3] and [2, 3, 4] is [1].difference in interface MutableSet<T>difference in interface SetIterable<T>difference in interface UnsortedSetIterable<T>public <R extends Set<T>> R differenceInto(SetIterable<? extends T> subtrahendSet, R targetSet)
SetIterableSetIterable.difference(SetIterable) but adds all the objects to targetSet and returns it.differenceInto in interface SetIterable<T>public MutableSet<T> symmetricDifference(SetIterable<? extends T> setB)
SetIterablethis and setB (elements which
are in one of the sets, but not in both). For instance, for the sets [1, 2, 3] and [2, 3, 4], the symmetric
difference set is [1, 4] . It is the set difference of the union and the intersection.symmetricDifference in interface MutableSet<T>symmetricDifference in interface SetIterable<T>symmetricDifference in interface UnsortedSetIterable<T>public <R extends Set<T>> R symmetricDifferenceInto(SetIterable<? extends T> set, R targetSet)
SetIterableSetIterable.symmetricDifference(SetIterable) but adds all the objects to targetSet and returns it.symmetricDifferenceInto in interface SetIterable<T>public boolean isSubsetOf(SetIterable<? extends T> candidateSuperset)
SetIterablethis are also members of candidateSuperset.
For example, [1, 2] is a subset of [1, 2, 3], but [1, 4] is not.isSubsetOf in interface SetIterable<T>public boolean isProperSubsetOf(SetIterable<? extends T> candidateSuperset)
SetIterablethis are also members of candidateSuperset and the
two sets are not equal. For example, [1, 2] is a proper subset of [1, 2, 3], but [1, 2, 3] is not.isProperSubsetOf in interface SetIterable<T>public MutableSet<UnsortedSetIterable<T>> powerSet()
UnsortedSetIterablethis. For example, the powerset of [1, 2] is
[[], [1], [2], [1, 2]].powerSet in interface MutableSet<T>powerSet in interface UnsortedSetIterable<T>public <B> LazyIterable<Pair<T,B>> cartesianProduct(SetIterable<B> set)
SetIterablethis and b is a
member of set.cartesianProduct in interface SetIterable<T>public ParallelUnsortedSetIterable<T> asParallel(ExecutorService executorService, int batchSize)
SetIterableasParallel in interface SetIterable<T>asParallel in interface UnsortedSetIterable<T>Copyright © 2004–2016. All rights reserved.