public class UnmodifiableMutableSet<T> extends AbstractUnmodifiableMutableCollection<T> implements MutableSet<T>, Serializable
MutableSet.asUnmodifiable()
,
Serialized FormModifier and Type | Method and Description |
---|---|
ParallelUnsortedSetIterable<T> |
asParallel(ExecutorService executorService,
int batchSize)
Returns a parallel iterable of this SetIterable.
|
MutableSet<T> |
asSynchronized()
Returns a synchronized (thread-safe) collection backed by this collection.
|
MutableSet<T> |
asUnmodifiable()
Returns an unmodifiable view of this collection.
|
<B> LazyIterable<Pair<T,B>> |
cartesianProduct(SetIterable<B> set)
Returns the set whose members are all possible ordered pairs (a, b) where a is a member of
this and b is a
member of set . |
UnmodifiableMutableSet<T> |
clone() |
<V> MutableSet<V> |
collect(Function<? super T,? extends V> function)
Returns a new MutableCollection with the results of applying the specified function to each element of the source
collection.
|
MutableBooleanSet |
collectBoolean(BooleanFunction<? super T> booleanFunction)
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
MutableByteSet |
collectByte(ByteFunction<? super T> byteFunction)
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
MutableCharSet |
collectChar(CharFunction<? super T> charFunction)
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
MutableDoubleSet |
collectDouble(DoubleFunction<? super T> doubleFunction)
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
MutableFloatSet |
collectFloat(FloatFunction<? super T> floatFunction)
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<V> MutableSet<V> |
collectIf(Predicate<? super T> predicate,
Function<? super T,? extends V> function)
Returns a new MutableCollection with the results of applying the specified function to each element of the source
collection, but only for elements that evaluate to true for the specified predicate.
|
MutableIntSet |
collectInt(IntFunction<? super T> intFunction)
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
MutableLongSet |
collectLong(LongFunction<? super T> longFunction)
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
MutableShortSet |
collectShort(ShortFunction<? super T> shortFunction)
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<P,A> MutableSet<A> |
collectWith(Function2<? super T,? super P,? extends A> function,
P parameter)
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
MutableSet<T> |
difference(SetIterable<? extends T> subtrahendSet)
Returns the set of all members of
this that are not members of subtrahendSet . |
<R extends Set<T>> |
differenceInto(SetIterable<? extends T> subtrahendSet,
R targetSet)
Same as
SetIterable.difference(SetIterable) but adds all the objects to targetSet and returns it. |
boolean |
equals(Object obj)
Follows the same general contract as
Set.equals(Object) . |
<V> MutableSet<V> |
flatCollect(Function<? super T,? extends Iterable<V>> function)
flatCollect is a special case of RichIterable.collect(Function) . |
<V> MutableSetMultimap<V,T> |
groupBy(Function<? super T,? extends V> function)
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V> MutableSetMultimap<V,T> |
groupByEach(Function<? super T,? extends Iterable<V>> function)
Similar to
RichIterable.groupBy(Function) , except the result of evaluating function will return a collection of keys
for each value. |
int |
hashCode()
Follows the same general contract as
Set.hashCode() . |
MutableSet<T> |
intersect(SetIterable<? extends T> set)
Returns the set of all objects that are members of both
this and set . |
<R extends Set<T>> |
intersectInto(SetIterable<? extends T> set,
R targetSet)
Same as
SetIterable.intersect(SetIterable) but adds all the objects to targetSet and returns it. |
boolean |
isProperSubsetOf(SetIterable<? extends T> candidateSuperset)
Returns true if all the members of
this are also members of candidateSuperset and the
two sets are not equal. |
boolean |
isSubsetOf(SetIterable<? extends T> candidateSuperset)
Returns true if all the members of
this are also members of candidateSuperset . |
MutableSet<T> |
newEmpty()
Creates a new empty mutable version of the same collection type.
|
static <E,S extends Set<E>> |
of(S set)
This method will take a MutableSet and wrap it directly in a UnmodifiableMutableSet.
|
PartitionMutableSet<T> |
partition(Predicate<? super T> predicate)
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableSet<T> |
partitionWith(Predicate2<? super T,? super P> predicate,
P parameter)
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableSet<UnsortedSetIterable<T>> |
powerSet()
Returns the set whose members are all possible subsets of
this . |
MutableSet<T> |
reject(Predicate<? super T> predicate)
Returns a MutableCollection with all elements that evaluate to false for the specified predicate.
|
<P> MutableSet<T> |
rejectWith(Predicate2<? super T,? super P> predicate,
P parameter)
Returns a MutableCollection with all elements that evaluate to false for the specified predicate2 and parameter.
|
MutableSet<T> |
select(Predicate<? super T> predicate)
Returns a MutableCollection with all elements that evaluate to true for the specified predicate.
|
<S> MutableSet<S> |
selectInstancesOf(Class<S> clazz)
Returns all elements of the source collection that are instances of the Class
clazz . |
<P> MutableSet<T> |
selectWith(Predicate2<? super T,? super P> predicate,
P parameter)
Returns a MutableCollection with all elements that evaluate to true for the specified predicate2 and parameter.
|
MutableSet<T> |
symmetricDifference(SetIterable<? extends T> setB)
Returns the set of all objects that are a member of exactly one of
this and setB (elements which
are in one of the sets, but not in both). |
<R extends Set<T>> |
symmetricDifferenceInto(SetIterable<? extends T> set,
R targetSet)
Same as
SetIterable.symmetricDifference(SetIterable) but adds all the objects to targetSet and returns it. |
MutableSet<T> |
tap(Procedure<? super T> procedure)
Executes the Procedure for each element in the iterable and returns
this . |
ImmutableSet<T> |
toImmutable()
Converts this MutableCollection to an ImmutableCollection.
|
MutableSet<T> |
union(SetIterable<? extends T> set)
Returns the set of all objects that are a member of
this or set or both. |
<R extends Set<T>> |
unionInto(SetIterable<? extends T> set,
R targetSet)
Same as
SetIterable.union(SetIterable) but adds all the objects to targetSet and returns it. |
MutableSet<T> |
with(T element)
This method allows mutable and fixed size collections the ability to add elements to their existing elements.
|
MutableSet<T> |
withAll(Iterable<? extends T> elements)
This method allows mutable and fixed size collections the ability to add multiple elements to their existing
elements.
|
MutableSet<T> |
without(T element)
This method allows mutable and fixed size collections the ability to remove elements from their existing elements.
|
MutableSet<T> |
withoutAll(Iterable<? extends T> elements)
This method allows mutable and fixed size collections the ability to remove multiple elements from their existing
elements.
|
<S> MutableSet<Pair<T,S>> |
zip(Iterable<S> that)
Deprecated.
in 6.0. Use
OrderedIterable.zip(Iterable) instead. |
<S,R extends Collection<Pair<T,S>>> |
zip(Iterable<S> that,
R target)
Same as
RichIterable.zip(Iterable) but uses target for output. |
MutableSet<Pair<T,Integer>> |
zipWithIndex()
Deprecated.
in 6.0. Use
OrderedIterable.zipWithIndex() instead. |
<R extends Collection<Pair<T,Integer>>> |
zipWithIndex(R target)
Same as
RichIterable.zipWithIndex() but uses target for output. |
add, addAll, addAllIterable, aggregateBy, aggregateInPlaceBy, allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, clear, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, injectIntoWith, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, remove, removeAll, removeAllIterable, removeIf, removeIfWith, retainAll, retainAllIterable, select, selectAndRejectWith, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString
addAllIterable, aggregateBy, aggregateInPlaceBy, groupByUniqueKey, injectIntoWith, removeAllIterable, removeIf, removeIfWith, retainAllIterable, selectAndRejectWith
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectWith, detectWithIfNone, each, flatCollect, getFirst, getLast, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, isEmpty, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumByDouble, sumByFloat, sumByInt, sumByLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString
forEach, forEachWith, forEachWithIndex
add, addAll, clear, contains, containsAll, isEmpty, iterator, remove, removeAll, retainAll, size, spliterator, toArray, toArray
parallelStream, removeIf, stream
public static <E,S extends Set<E>> UnmodifiableMutableSet<E> of(S set)
public MutableSet<T> asUnmodifiable()
MutableCollection
The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.
The returned collection will be serializable if this collection is serializable.
asUnmodifiable
in interface MutableCollection<T>
asUnmodifiable
in interface MutableSet<T>
asUnmodifiable
in class AbstractUnmodifiableMutableCollection<T>
public MutableSet<T> asSynchronized()
MutableCollection
It is imperative that the user manually synchronize on the returned collection when iterating over it using the standard JDK iterator or JDK 5 for loop.
MutableCollection collection = myCollection.asSynchronized(); ... synchronized(collection) { Iterator i = c.iterator(); // Must be in the synchronized block while (i.hasNext()) foo(i.next()); }Failure to follow this advice may result in non-deterministic behavior.
The preferred way of iterating over a synchronized collection is to use the collection.forEach() method which is properly synchronized internally.
MutableCollection collection = myCollection.asSynchronized(); ... collection.forEach(new Procedure() { public void value(Object each) { ... } });
The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.
The returned collection will be serializable if this collection is serializable.
asSynchronized
in interface MutableCollection<T>
asSynchronized
in interface MutableSet<T>
asSynchronized
in class AbstractUnmodifiableMutableCollection<T>
public ImmutableSet<T> toImmutable()
MutableCollection
toImmutable
in interface MutableCollection<T>
toImmutable
in interface MutableSet<T>
toImmutable
in interface SetIterable<T>
toImmutable
in interface UnsortedSetIterable<T>
toImmutable
in class AbstractUnmodifiableMutableCollection<T>
public boolean equals(Object obj)
SetIterable
Set.equals(Object)
.public int hashCode()
SetIterable
Set.hashCode()
.public UnmodifiableMutableSet<T> clone()
clone
in interface MutableSet<T>
clone
in class Object
public MutableSet<T> newEmpty()
MutableCollection
newEmpty
in interface MutableCollection<T>
newEmpty
in interface MutableSet<T>
newEmpty
in class AbstractUnmodifiableMutableCollection<T>
public MutableSet<T> tap(Procedure<? super T> procedure)
RichIterable
this
.
Example using a Java 8 lambda expression:
RichIterable<Person> tapped = people.tap(person -> LOGGER.info(person.getName()));
Example using an anonymous inner class:
RichIterable<Person> tapped = people.tap(new Procedure() { public void value(Person person) { LOGGER.info(person.getName()); } });
tap
in interface MutableCollection<T>
tap
in interface RichIterable<T>
tap
in interface MutableSet<T>
tap
in interface MutableSetIterable<T>
tap
in class AbstractUnmodifiableMutableCollection<T>
RichIterable.each(Procedure)
,
InternalIterable.forEach(Procedure)
public MutableSet<T> select(Predicate<? super T> predicate)
MutableCollection
e.g. return people.select(new Predicate<Person>() { public boolean value(Person person) { return person.getAddress().getCity().equals("Metuchen"); } });
select
in interface MutableCollection<T>
select
in interface RichIterable<T>
select
in interface MutableSet<T>
select
in interface MutableSetIterable<T>
select
in interface SetIterable<T>
select
in interface UnsortedSetIterable<T>
select
in class AbstractUnmodifiableMutableCollection<T>
public <P> MutableSet<T> selectWith(Predicate2<? super T,? super P> predicate, P parameter)
MutableCollection
e.g. return integers.selectWith(PredicatesLite.equal(), Integer.valueOf(5));
selectWith
in interface MutableCollection<T>
selectWith
in interface RichIterable<T>
selectWith
in interface MutableSet<T>
selectWith
in interface MutableSetIterable<T>
selectWith
in interface SetIterable<T>
selectWith
in interface UnsortedSetIterable<T>
selectWith
in class AbstractUnmodifiableMutableCollection<T>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public MutableSet<T> reject(Predicate<? super T> predicate)
MutableCollection
e.g. return people.reject(new Predicate<Person>() { public boolean value(Person person) { return person.person.getLastName().equals("Smith"); } });
e.g. return people.reject(Predicates.attributeEqual("lastName", "Smith"));
reject
in interface MutableCollection<T>
reject
in interface RichIterable<T>
reject
in interface MutableSet<T>
reject
in interface MutableSetIterable<T>
reject
in interface SetIterable<T>
reject
in interface UnsortedSetIterable<T>
reject
in class AbstractUnmodifiableMutableCollection<T>
predicate
- a Predicate
to use as the reject criteriaPredicate.accept(Object)
method to evaluate to falsepublic <P> MutableSet<T> rejectWith(Predicate2<? super T,? super P> predicate, P parameter)
MutableCollection
e.g. return integers.rejectWith(PredicatesLite.equal(), Integer.valueOf(5));
rejectWith
in interface MutableCollection<T>
rejectWith
in interface RichIterable<T>
rejectWith
in interface MutableSet<T>
rejectWith
in interface MutableSetIterable<T>
rejectWith
in interface SetIterable<T>
rejectWith
in interface UnsortedSetIterable<T>
rejectWith
in class AbstractUnmodifiableMutableCollection<T>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public PartitionMutableSet<T> partition(Predicate<? super T> predicate)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getState().getName().equals("New York"); } });
partition
in interface MutableCollection<T>
partition
in interface RichIterable<T>
partition
in interface MutableSet<T>
partition
in interface MutableSetIterable<T>
partition
in interface SetIterable<T>
partition
in class AbstractUnmodifiableMutableCollection<T>
public <P> PartitionMutableSet<T> partitionWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith(new Predicate2<Person, String>() { public boolean accept(Person person, String state) { return person.getAddress().getState().getName().equals(state); } }, "New York");
partitionWith
in interface MutableCollection<T>
partitionWith
in interface RichIterable<T>
partitionWith
in interface MutableSet<T>
partitionWith
in interface MutableSetIterable<T>
partitionWith
in interface SetIterable<T>
partitionWith
in class AbstractUnmodifiableMutableCollection<T>
public <S> MutableSet<S> selectInstancesOf(Class<S> clazz)
RichIterable
clazz
.selectInstancesOf
in interface MutableCollection<T>
selectInstancesOf
in interface RichIterable<T>
selectInstancesOf
in interface MutableSet<T>
selectInstancesOf
in interface MutableSetIterable<T>
selectInstancesOf
in interface SetIterable<T>
selectInstancesOf
in interface UnsortedSetIterable<T>
selectInstancesOf
in class AbstractUnmodifiableMutableCollection<T>
public <V> MutableSet<V> collect(Function<? super T,? extends V> function)
MutableCollection
e.g. return people.collect(new Function<Person, String>() { public String value(Person person) { return person.getFirstName() + " " + person.getLastName(); } });
collect
in interface MutableCollection<T>
collect
in interface RichIterable<T>
collect
in interface MutableSet<T>
collect
in interface UnsortedSetIterable<T>
collect
in class AbstractUnmodifiableMutableCollection<T>
public MutableBooleanSet collectBoolean(BooleanFunction<? super T> booleanFunction)
RichIterable
boolean
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses = people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses = people.collectBoolean(new BooleanFunction<Person>() { public boolean booleanValueOf(Person person) { return person.hasDrivingLicense(); } });
collectBoolean
in interface MutableCollection<T>
collectBoolean
in interface RichIterable<T>
collectBoolean
in interface MutableSet<T>
collectBoolean
in interface UnsortedSetIterable<T>
collectBoolean
in class AbstractUnmodifiableMutableCollection<T>
public MutableByteSet collectByte(ByteFunction<? super T> byteFunction)
RichIterable
byte
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes = people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes = people.collectByte(new ByteFunction<Person>() { public byte byteValueOf(Person person) { return person.getCode(); } });
collectByte
in interface MutableCollection<T>
collectByte
in interface RichIterable<T>
collectByte
in interface MutableSet<T>
collectByte
in interface UnsortedSetIterable<T>
collectByte
in class AbstractUnmodifiableMutableCollection<T>
public MutableCharSet collectChar(CharFunction<? super T> charFunction)
RichIterable
char
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars = people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars = people.collectChar(new CharFunction<Person>() { public char charValueOf(Person person) { return person.getMiddleInitial(); } });
collectChar
in interface MutableCollection<T>
collectChar
in interface RichIterable<T>
collectChar
in interface MutableSet<T>
collectChar
in interface UnsortedSetIterable<T>
collectChar
in class AbstractUnmodifiableMutableCollection<T>
public MutableDoubleSet collectDouble(DoubleFunction<? super T> doubleFunction)
RichIterable
double
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles = people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles = people.collectDouble(new DoubleFunction<Person>() { public double doubleValueOf(Person person) { return person.getMilesFromNorthPole(); } });
collectDouble
in interface MutableCollection<T>
collectDouble
in interface RichIterable<T>
collectDouble
in interface MutableSet<T>
collectDouble
in interface UnsortedSetIterable<T>
collectDouble
in class AbstractUnmodifiableMutableCollection<T>
public MutableFloatSet collectFloat(FloatFunction<? super T> floatFunction)
RichIterable
float
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats = people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats = people.collectFloat(new FloatFunction<Person>() { public float floatValueOf(Person person) { return person.getHeightInInches(); } });
collectFloat
in interface MutableCollection<T>
collectFloat
in interface RichIterable<T>
collectFloat
in interface MutableSet<T>
collectFloat
in interface UnsortedSetIterable<T>
collectFloat
in class AbstractUnmodifiableMutableCollection<T>
public MutableIntSet collectInt(IntFunction<? super T> intFunction)
RichIterable
int
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints = people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints = people.collectInt(new IntFunction<Person>() { public int intValueOf(Person person) { return person.getAge(); } });
collectInt
in interface MutableCollection<T>
collectInt
in interface RichIterable<T>
collectInt
in interface MutableSet<T>
collectInt
in interface UnsortedSetIterable<T>
collectInt
in class AbstractUnmodifiableMutableCollection<T>
public MutableLongSet collectLong(LongFunction<? super T> longFunction)
RichIterable
long
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs = people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs = people.collectLong(new LongFunction<Person>() { public long longValueOf(Person person) { return person.getGuid(); } });
collectLong
in interface MutableCollection<T>
collectLong
in interface RichIterable<T>
collectLong
in interface MutableSet<T>
collectLong
in interface UnsortedSetIterable<T>
collectLong
in class AbstractUnmodifiableMutableCollection<T>
public MutableShortSet collectShort(ShortFunction<? super T> shortFunction)
RichIterable
short
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts = people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts = people.collectShort(new ShortFunction<Person>() { public short shortValueOf(Person person) { return person.getNumberOfJunkMailItemsReceivedPerMonth(); } });
collectShort
in interface MutableCollection<T>
collectShort
in interface RichIterable<T>
collectShort
in interface MutableSet<T>
collectShort
in interface UnsortedSetIterable<T>
collectShort
in class AbstractUnmodifiableMutableCollection<T>
public <V> MutableSet<V> flatCollect(Function<? super T,? extends Iterable<V>> function)
RichIterable
flatCollect
is a special case of RichIterable.collect(Function)
. With collect
, when the Function
returns
a collection, the result is a collection of collections. flatCollect
outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person
class, and each Person
has a list of Address
objects. Take the following Function
:
Function<Person, List<Address>> addressFunction = Person::getAddresses; MutableList<Person> people = ...;Using
collect
returns a collection of collections of addresses.
MutableList<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect
returns a single flattened list of addresses.
MutableList<Address> addresses = people.flatCollect(addressFunction);
flatCollect
in interface MutableCollection<T>
flatCollect
in interface RichIterable<T>
flatCollect
in interface MutableSet<T>
flatCollect
in interface UnsortedSetIterable<T>
flatCollect
in class AbstractUnmodifiableMutableCollection<T>
function
- The Function
to applyfunction
public <P,A> MutableSet<A> collectWith(Function2<? super T,? super P,? extends A> function, P parameter)
RichIterable
RichIterable.collect(Function)
with a Function2
and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers = Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction = new Function2<Integer, Integer, Integer>() { public Integer value(Integer each, Integer parameter) { return each + parameter; } }; RichIterable<Integer> integers = Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith
in interface MutableCollection<T>
collectWith
in interface RichIterable<T>
collectWith
in interface MutableSet<T>
collectWith
in interface UnsortedSetIterable<T>
collectWith
in class AbstractUnmodifiableMutableCollection<T>
function
- A Function2
to use as the collect transformation functionparameter
- A parameter to pass in for evaluation of the second argument P
in function
RichIterable
that contains the transformed elements returned by Function2.value(Object, Object)
RichIterable.collect(Function)
public <V> MutableSet<V> collectIf(Predicate<? super T> predicate, Function<? super T,? extends V> function)
MutableCollection
e.g. Lists.mutable.of().with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString())
collectIf
in interface MutableCollection<T>
collectIf
in interface RichIterable<T>
collectIf
in interface MutableSet<T>
collectIf
in interface UnsortedSetIterable<T>
collectIf
in class AbstractUnmodifiableMutableCollection<T>
public <V> MutableSetMultimap<V,T> groupBy(Function<? super T,? extends V> function)
RichIterable
Example using a Java 8 method reference:
Multimap<String, Person> peopleByLastName = people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName = people.groupBy(new Function<Person, String>() { public String valueOf(Person person) { return person.getLastName(); } });
groupBy
in interface MutableCollection<T>
groupBy
in interface RichIterable<T>
groupBy
in interface MutableSet<T>
groupBy
in interface MutableSetIterable<T>
groupBy
in interface UnsortedSetIterable<T>
groupBy
in class AbstractUnmodifiableMutableCollection<T>
public <V> MutableSetMultimap<V,T> groupByEach(Function<? super T,? extends Iterable<V>> function)
RichIterable
RichIterable.groupBy(Function)
, except the result of evaluating function will return a collection of keys
for each value.groupByEach
in interface MutableCollection<T>
groupByEach
in interface RichIterable<T>
groupByEach
in interface MutableSet<T>
groupByEach
in interface MutableSetIterable<T>
groupByEach
in interface UnsortedSetIterable<T>
groupByEach
in class AbstractUnmodifiableMutableCollection<T>
@Deprecated public <S> MutableSet<Pair<T,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable)
instead.RichIterable
RichIterable
formed from this RichIterable
and another RichIterable
by
combining corresponding elements in pairs. If one of the two RichIterable
s is longer than the other, its
remaining elements are ignored.zip
in interface MutableCollection<T>
zip
in interface RichIterable<T>
zip
in interface MutableSet<T>
zip
in interface MutableSetIterable<T>
zip
in interface UnsortedSetIterable<T>
zip
in class AbstractUnmodifiableMutableCollection<T>
S
- the type of the second half of the returned pairsthat
- The RichIterable
providing the second half of each result pairRichIterable
containing pairs consisting of corresponding elements of this RichIterable
and that. The length of the returned RichIterable
is the minimum of the lengths of
this RichIterable
and that.public <S,R extends Collection<Pair<T,S>>> R zip(Iterable<S> that, R target)
RichIterable
RichIterable.zip(Iterable)
but uses target
for output.zip
in interface RichIterable<T>
zip
in class AbstractUnmodifiableMutableCollection<T>
@Deprecated public MutableSet<Pair<T,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex()
instead.RichIterable
RichIterable
with its indices.zipWithIndex
in interface MutableCollection<T>
zipWithIndex
in interface RichIterable<T>
zipWithIndex
in interface MutableSet<T>
zipWithIndex
in interface MutableSetIterable<T>
zipWithIndex
in interface SetIterable<T>
zipWithIndex
in interface UnsortedSetIterable<T>
zipWithIndex
in class AbstractUnmodifiableMutableCollection<T>
RichIterable
containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)
public <R extends Collection<Pair<T,Integer>>> R zipWithIndex(R target)
RichIterable
RichIterable.zipWithIndex()
but uses target
for output.zipWithIndex
in interface RichIterable<T>
zipWithIndex
in class AbstractUnmodifiableMutableCollection<T>
public MutableSet<T> union(SetIterable<? extends T> set)
SetIterable
this
or set
or both. The union of [1, 2, 3]
and [2, 3, 4] is the set [1, 2, 3, 4]. If equal elements appear in both sets, then the output will contain the
copy from this
.union
in interface MutableSet<T>
union
in interface SetIterable<T>
union
in interface UnsortedSetIterable<T>
public <R extends Set<T>> R unionInto(SetIterable<? extends T> set, R targetSet)
SetIterable
SetIterable.union(SetIterable)
but adds all the objects to targetSet
and returns it.unionInto
in interface SetIterable<T>
public MutableSet<T> intersect(SetIterable<? extends T> set)
SetIterable
this
and set
. The intersection of
[1, 2, 3] and [2, 3, 4] is the set [2, 3]. The output will contain instances from this
, not set
.intersect
in interface MutableSet<T>
intersect
in interface SetIterable<T>
intersect
in interface UnsortedSetIterable<T>
public <R extends Set<T>> R intersectInto(SetIterable<? extends T> set, R targetSet)
SetIterable
SetIterable.intersect(SetIterable)
but adds all the objects to targetSet
and returns it.intersectInto
in interface SetIterable<T>
public MutableSet<T> difference(SetIterable<? extends T> subtrahendSet)
SetIterable
this
that are not members of subtrahendSet
. The difference of
[1, 2, 3] and [2, 3, 4] is [1].difference
in interface MutableSet<T>
difference
in interface SetIterable<T>
difference
in interface UnsortedSetIterable<T>
public <R extends Set<T>> R differenceInto(SetIterable<? extends T> subtrahendSet, R targetSet)
SetIterable
SetIterable.difference(SetIterable)
but adds all the objects to targetSet
and returns it.differenceInto
in interface SetIterable<T>
public MutableSet<T> symmetricDifference(SetIterable<? extends T> setB)
SetIterable
this
and setB
(elements which
are in one of the sets, but not in both). For instance, for the sets [1, 2, 3] and [2, 3, 4], the symmetric
difference set is [1, 4] . It is the set difference of the union and the intersection.symmetricDifference
in interface MutableSet<T>
symmetricDifference
in interface SetIterable<T>
symmetricDifference
in interface UnsortedSetIterable<T>
public <R extends Set<T>> R symmetricDifferenceInto(SetIterable<? extends T> set, R targetSet)
SetIterable
SetIterable.symmetricDifference(SetIterable)
but adds all the objects to targetSet
and returns it.symmetricDifferenceInto
in interface SetIterable<T>
public boolean isSubsetOf(SetIterable<? extends T> candidateSuperset)
SetIterable
this
are also members of candidateSuperset
.
For example, [1, 2] is a subset of [1, 2, 3], but [1, 4] is not.isSubsetOf
in interface SetIterable<T>
public boolean isProperSubsetOf(SetIterable<? extends T> candidateSuperset)
SetIterable
this
are also members of candidateSuperset
and the
two sets are not equal. For example, [1, 2] is a proper subset of [1, 2, 3], but [1, 2, 3] is not.isProperSubsetOf
in interface SetIterable<T>
public MutableSet<UnsortedSetIterable<T>> powerSet()
UnsortedSetIterable
this
. For example, the powerset of [1, 2] is
[[], [1], [2], [1, 2]].powerSet
in interface MutableSet<T>
powerSet
in interface UnsortedSetIterable<T>
public <B> LazyIterable<Pair<T,B>> cartesianProduct(SetIterable<B> set)
SetIterable
this
and b is a
member of set
.cartesianProduct
in interface SetIterable<T>
public MutableSet<T> with(T element)
MutableCollection
MutableCollectionIn the case oflist; list = list.with("1"); list = list.with("2"); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by with, and any
variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling add on itself.with
in interface MutableCollection<T>
with
in interface MutableSet<T>
with
in class AbstractUnmodifiableMutableCollection<T>
Collection.add(Object)
public MutableSet<T> without(T element)
MutableCollection
MutableCollectionIn the case oflist; list = list.without("1"); list = list.without("2"); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by without, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling remove on itself.without
in interface MutableCollection<T>
without
in interface MutableSet<T>
without
in class AbstractUnmodifiableMutableCollection<T>
Collection.remove(Object)
public MutableSet<T> withAll(Iterable<? extends T> elements)
MutableCollection
MutableCollectionIn the case oflist; list = list.withAll(FastList.newListWith("1", "2")); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by withAll, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling addAll on itself.withAll
in interface MutableCollection<T>
withAll
in interface MutableSet<T>
withAll
in class AbstractUnmodifiableMutableCollection<T>
Collection.addAll(Collection)
public MutableSet<T> withoutAll(Iterable<? extends T> elements)
MutableCollection
MutableCollectionIn the case oflist; list = list.withoutAll(FastList.newListWith("1", "2")); return list;
FixedSizeCollection
a new instance of MutableCollection will be returned by withoutAll,
and any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling removeAll on itself.withoutAll
in interface MutableCollection<T>
withoutAll
in interface MutableSet<T>
withoutAll
in class AbstractUnmodifiableMutableCollection<T>
Collection.removeAll(Collection)
public ParallelUnsortedSetIterable<T> asParallel(ExecutorService executorService, int batchSize)
SetIterable
asParallel
in interface SetIterable<T>
asParallel
in interface UnsortedSetIterable<T>
Copyright © 2004–2016. All rights reserved.