public interface MutableBiMap<K,V> extends BiMap<K,V>, MutableMapIterable<K,V>, Cloneable
BiMap whose contents can be altered after initialization.| Modifier and Type | Method and Description |
|---|---|
MutableBiMap<K,V> |
asSynchronized()
Returns a synchronized (thread-safe) map backed by the specified map.
|
MutableBiMap<K,V> |
asUnmodifiable()
Returns an unmodifiable view of this map.
|
MutableBiMap<K,V> |
clone() |
<K2,V2> MutableBiMap<K2,V2> |
collect(Function2<? super K,? super V,Pair<K2,V2>> function)
For each key and value of the map the function is evaluated.
|
<R> MutableBiMap<K,R> |
collectValues(Function2<? super K,? super V,? extends R> function)
For each key and value of the map the function is evaluated.
|
MutableSetMultimap<V,K> |
flip()
Given a map from Domain -> Range return a multimap from Range -> Domain.
|
MutableBiMap<V,K> |
flipUniqueValues()
Return the MapIterable that is obtained by flipping the direction of this map and making the associations
from value to key.
|
V |
forcePut(K key,
V value)
Similar to
put(Object, Object), except that it quietly removes any existing entry with the same
value before putting the key-value pair. |
<V1> MutableSetMultimap<V1,V> |
groupBy(Function<? super V,? extends V1> function)
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V1> MutableSetMultimap<V1,V> |
groupByEach(Function<? super V,? extends Iterable<V1>> function)
Similar to
RichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value. |
<VV> MutableBiMap<VV,V> |
groupByUniqueKey(Function<? super V,? extends VV> function)
For each element of the iterable, the function is evaluated and he results of these evaluations are collected
into a new map, where the transformed value is the key.
|
MutableBiMap<V,K> |
inverse()
Returns an inversed view of this BiMap, where the associations are in the direction of this bimap's values to keys.
|
MutableBiMap<K,V> |
newEmpty()
Creates a new instance of the same type, using the default capacity and growth parameters.
|
PartitionMutableSet<V> |
partition(Predicate<? super V> predicate)
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableSet<V> |
partitionWith(Predicate2<? super V,? super P> predicate,
P parameter)
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
V |
put(K key,
V value)
Similar to
Map.put(Object, Object), except that it throws on the addition of a duplicate value. |
MutableSet<V> |
reject(Predicate<? super V> predicate)
Returns all elements of the source collection that return false when evaluating of the predicate.
|
MutableBiMap<K,V> |
reject(Predicate2<? super K,? super V> predicate)
For each key and value of the map the predicate is evaluated, if the result of the evaluation is false,
that key and value are returned in a new map.
|
<P> MutableSet<V> |
rejectWith(Predicate2<? super V,? super P> predicate,
P parameter)
Similar to
RichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
MutableSet<V> |
select(Predicate<? super V> predicate)
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableBiMap<K,V> |
select(Predicate2<? super K,? super V> predicate)
For each key and value of the map the predicate is evaluated, if the result of the evaluation is true,
that key and value are returned in a new map.
|
<S> MutableSet<S> |
selectInstancesOf(Class<S> clazz)
Returns all elements of the source collection that are instances of the Class
clazz. |
<P> MutableSet<V> |
selectWith(Predicate2<? super V,? super P> predicate,
P parameter)
Similar to
RichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
MutableBiMap<K,V> |
tap(Procedure<? super V> procedure)
Executes the Procedure for each value of the map and returns
this. |
MutableBiMap<K,V> |
withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
Convenience var-args version of withAllKeyValues
|
MutableBiMap<K,V> |
withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues)
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withKeyValue(K key,
V value)
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withoutAllKeys(Iterable<? extends K> keys)
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
MutableBiMap<K,V> |
withoutKey(K key)
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
<S> MutableSet<Pair<V,S>> |
zip(Iterable<S> that)
Deprecated.
in 8.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<V,Integer>> |
zipWithIndex()
Deprecated.
in 8.0. Use
OrderedIterable.zipWithIndex() instead. |
toImmutableadd, aggregateBy, aggregateInPlaceBy, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, toImmutable, updateValue, updateValueWithcontainsKey, containsValue, detect, detectOptional, equals, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentValue, getIfAbsentWith, hashCode, ifPresentApply, keysView, keyValuesView, toString, valuesViewallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collect, collectBoolean, collectBoolean, collectByte, collectByte, collectChar, collectChar, collectDouble, collectDouble, collectFloat, collectFloat, collectIf, collectIf, collectInt, collectInt, collectLong, collectLong, collectShort, collectShort, collectWith, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, flatCollect, flatCollect, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, makeString, makeString, makeString, max, max, maxBy, min, min, minBy, noneSatisfy, noneSatisfyWith, notEmpty, reduce, reduceInPlace, reduceInPlace, reject, rejectWith, select, selectWith, size, summarizeDouble, summarizeFloat, summarizeInt, summarizeLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, zip, zipWithIndexforEach, forEachWith, forEachWithIndexforEach, iterator, spliteratorclear, compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, entrySet, equals, forEach, get, getOrDefault, hashCode, isEmpty, keySet, merge, putAll, putIfAbsent, remove, remove, replace, replace, replaceAll, size, valuesMutableBiMap<K,V> newEmpty()
MutableMapIterablenewEmpty in interface MutableMapIterable<K,V>MutableBiMap<V,K> inverse()
BiMapMutableBiMap<V,K> flipUniqueValues()
MapIterable
MapIterable map = this.newMapWithKeysValues(1, "1", 2, "2", 3, "3");
MapIterable result = map.flipUniqueValues();
Assert.assertTrue(result.equals(UnifiedMap.newWithKeysValues("1", 1, "2", 2, "3", 3)));
flipUniqueValues in interface BiMap<K,V>flipUniqueValues in interface MapIterable<K,V>flipUniqueValues in interface MutableMapIterable<K,V>MutableSetMultimap<V,K> flip()
MapIterableSince the keys in the input are unique, the values in the output are unique, so the return type should be a SetMultimap. However since SetMultimap and SortedSetMultimap don't inherit from one another, SetMultimap here does not allow SortedMapIterable to have a SortedSetMultimap return. Thus we compromise and call this Multimap, even though all implementations will be a SetMultimap or SortedSetMultimap.
V put(K key, V value)
Map.put(Object, Object), except that it throws on the addition of a duplicate value.put in interface Map<K,V>IllegalArgumentException - if the value already exists in the bimap.V forcePut(K key, V value)
put(Object, Object), except that it quietly removes any existing entry with the same
value before putting the key-value pair.MutableBiMap<K,V> asSynchronized()
MutableMapIterable
It is imperative that the user manually synchronize on the returned map when iterating over any of its collection views:
MutableMap map = myMutableMap.asSynchronized();
...
Set set = map.keySet(); // Needn't be in synchronized block
...
synchronized(map)
{ // Synchronizing on map, not set!
Iterator i = s.iterator(); // Must be in synchronized block
while (i.hasNext())
foo(i.next());
}
Failure to follow this advice may result in non-deterministic behavior.
The preferred way of iterating over a synchronized collection is to use the collection.forEach() method which is properly synchronized internally.
MutableMap map = myMutableMap.asSynchronized();
...
Set set = map.keySet(); // Needn't be in synchronized block
...
Iterate.forEach(set, new Procedure()
{
public void value(Object each)
{
...
}
});
The returned map will be serializable if the specified map is serializable.
asSynchronized in interface MutableMapIterable<K,V>MutableBiMap<K,V> asUnmodifiable()
MutableMapIterableUnsupportedOperationException.
The returned map will be Serializable if this map is Serializable.asUnmodifiable in interface MutableMapIterable<K,V>MutableBiMap<K,V> clone()
MutableBiMap<K,V> tap(Procedure<? super V> procedure)
MapIterablethis.
e.g. return peopleByCity.tap(new Procedure() { public void value(Person person) { LOGGER.info(person.getName()); } });
tap in interface BiMap<K,V>tap in interface MapIterable<K,V>tap in interface MutableMapIterable<K,V>tap in interface RichIterable<V>InternalIterable.forEach(Procedure)MutableBiMap<K,V> select(Predicate2<? super K,? super V> predicate)
MapIterable
e.g.
peopleByCity.select(new Predicate2<City, Person>()
{
public boolean accept(City city, Person person)
{
return city.getName().equals("Anytown") && person.getLastName().equals("Smith");
}
});
MutableBiMap<K,V> reject(Predicate2<? super K,? super V> predicate)
MapIterable
e.g.
peopleByCity.reject(new Predicate2<City, Person>()
{
public boolean accept(City city, Person person)
{
return city.getName().equals("Anytown") && person.getLastName().equals("Smith");
}
});
<K2,V2> MutableBiMap<K2,V2> collect(Function2<? super K,? super V,Pair<K2,V2>> function)
BiMap
e.g.
peopleByCity.collect(new Function2<City, Person, String>()
{
public String value(City city, Person person)
{
return Pair.of(city.getCountry(), person.getAddress().getCity());
}
});
Implementations are expected to delegate to put(Object, Object),
ImmutableBiMap.newWithKeyValue(Object, Object), or equivalent, not forcePut(Object, Object).<R> MutableBiMap<K,R> collectValues(Function2<? super K,? super V,? extends R> function)
BiMap
e.g.
peopleByCity.collectValues(new Function2<City, Person, String>()
{
public String value(City city, Person person)
{
return person.getFirstName() + " " + person.getLastName();
}
});
Implementations are expected to delegate to put(Object, Object),
ImmutableBiMap.newWithKeyValue(Object, Object), or equivalent, not forcePut(Object, Object).collectValues in interface BiMap<K,V>collectValues in interface MapIterable<K,V>collectValues in interface MutableMapIterable<K,V>MutableSet<V> select(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> selected =
people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.select(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getCity().equals("London");
}
});<P> MutableSet<V> selectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableRichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected =
people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.selectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() >= age;
}
}, Integer.valueOf(18));
selectWith in interface BiMap<K,V>selectWith in interface MutableMapIterable<K,V>selectWith in interface RichIterable<V>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)MutableSet<V> reject(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected =
people.reject(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.person.getLastName().equals("Smith");
}
});
reject in interface BiMap<K,V>reject in interface MutableMapIterable<K,V>reject in interface RichIterable<V>predicate - a Predicate to use as the reject criteriaPredicate.accept(Object) method to evaluate to false<P> MutableSet<V> rejectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableRichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected =
people.rejectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() < age;
}
}, Integer.valueOf(18));
rejectWith in interface BiMap<K,V>rejectWith in interface MutableMapIterable<K,V>rejectWith in interface RichIterable<V>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)PartitionMutableSet<V> partition(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getState().getName().equals("New York");
}
});
<P> PartitionMutableSet<V> partitionWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith(new Predicate2<Person, String>()
{
public boolean accept(Person person, String state)
{
return person.getAddress().getState().getName().equals(state);
}
}, "New York");
partitionWith in interface BiMap<K,V>partitionWith in interface RichIterable<V><S> MutableSet<S> selectInstancesOf(Class<S> clazz)
RichIterableclazz.selectInstancesOf in interface BiMap<K,V>selectInstancesOf in interface MutableMapIterable<K,V>selectInstancesOf in interface RichIterable<V>@Deprecated <S> MutableSet<Pair<V,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable) instead.RichIterableRichIterable formed from this RichIterable and another RichIterable by
combining corresponding elements in pairs. If one of the two RichIterables is longer than the other, its
remaining elements are ignored.zip in interface BiMap<K,V>zip in interface MutableMapIterable<K,V>zip in interface RichIterable<V>S - the type of the second half of the returned pairsthat - The RichIterable providing the second half of each result pairRichIterable containing pairs consisting of corresponding elements of this RichIterable and that. The length of the returned RichIterable is the minimum of the lengths of
this RichIterable and that.@Deprecated MutableSet<Pair<V,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex() instead.RichIterableRichIterable with its indices.zipWithIndex in interface BiMap<K,V>zipWithIndex in interface MutableMapIterable<K,V>zipWithIndex in interface RichIterable<V>RichIterable containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)<V1> MutableSetMultimap<V1,V> groupBy(Function<? super V,? extends V1> function)
RichIterableExample using a Java 8 method reference:
Multimap<String, Person> peopleByLastName =
people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName =
people.groupBy(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getLastName();
}
});
<V1> MutableSetMultimap<V1,V> groupByEach(Function<? super V,? extends Iterable<V1>> function)
RichIterableRichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value.groupByEach in interface BiMap<K,V>groupByEach in interface MutableMapIterable<K,V>groupByEach in interface RichIterable<V><VV> MutableBiMap<VV,V> groupByUniqueKey(Function<? super V,? extends VV> function)
RichIterablegroupByUniqueKey in interface BiMap<K,V>groupByUniqueKey in interface MutableMapIterable<K,V>groupByUniqueKey in interface RichIterable<V>RichIterable.groupBy(Function)MutableBiMap<K,V> withKeyValue(K key, V value)
MutableMapIterable
map = map.withKeyValue("new key", "new value");
In the case of FixedSizeMap, a new instance will be returned by withKeyValue, and any variables that
previously referenced the original map will need to be redirected to reference the new instance. In the case
of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap
will both return "this" after calling put on themselves.withKeyValue in interface MutableMapIterable<K,V>Map.put(Object, Object)MutableBiMap<K,V> withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues)
MutableMapIterable
map = map.withAllKeyValues(FastList.newListWith(PairImpl.of("new key", "new value")));
In the case of FixedSizeMap, a new instance will be returned by withAllKeyValues, and any variables that
previously referenced the original map will need to be redirected to reference the new instance. In the case
of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap
will both return "this" after calling put on themselves.withAllKeyValues in interface MutableMapIterable<K,V>Map.put(Object, Object)MutableBiMap<K,V> withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
MutableMapIterablewithAllKeyValueArguments in interface MutableMapIterable<K,V>MutableMapIterable.withAllKeyValues(Iterable)MutableBiMap<K,V> withoutKey(K key)
MutableMapIterable
map = map.withoutKey("key");
In the case of FixedSizeMap, a new instance will be returned by withoutKey, and any variables that previously
referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap
or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return
"this" after calling remove on themselves.withoutKey in interface MutableMapIterable<K,V>Map.remove(Object)MutableBiMap<K,V> withoutAllKeys(Iterable<? extends K> keys)
MutableMapIterable
map = map.withoutAllKeys(FastList.newListWith("key1", "key2"));
In the case of FixedSizeMap, a new instance will be returned by withoutAllKeys, and any variables that previously
referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap
or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return
"this" after calling remove on themselves.withoutAllKeys in interface MutableMapIterable<K,V>Map.remove(Object)Copyright © 2004–2016. All rights reserved.