Serializable, Iterable<T>, Collection<T>, Bag<T>, MutableBag<T>, MutableBagIterable<T>, UnsortedBag<T>, MutableCollection<T>, InternalIterable<T>, RichIterable<T>public class SynchronizedBag<T> extends AbstractSynchronizedMutableCollection<T> implements MutableBag<T>, Serializable
MutableBag. It is imperative that the user manually synchronize on the collection when iterating over it using the
standard JDK iterator or JDK 5 for loop, as per Collections.synchronizedCollection(Collection).MutableBag.asSynchronized(),
Serialized Form| Constructor | Description |
|---|---|
SynchronizedBag(MutableBag<T> bag,
Object newLock) |
| Modifier and Type | Method | Description |
|---|---|---|
int |
addOccurrences(T item,
int occurrences) |
Add number of
occurrences for an item. |
MutableBag<T> |
asSynchronized() |
Returns a synchronized wrapper backed by this collection.
|
MutableBag<T> |
asUnmodifiable() |
Returns an unmodifiable view of this collection.
|
MutableList<ObjectIntPair<T>> |
bottomOccurrences(int count) |
Returns the
count least frequently occurring items. |
<V> MutableBag<V> |
collect(Function<? super T,? extends V> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection.
|
MutableBooleanBag |
collectBoolean(BooleanFunction<? super T> booleanFunction) |
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
MutableByteBag |
collectByte(ByteFunction<? super T> byteFunction) |
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
MutableCharBag |
collectChar(CharFunction<? super T> charFunction) |
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
MutableDoubleBag |
collectDouble(DoubleFunction<? super T> doubleFunction) |
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
MutableFloatBag |
collectFloat(FloatFunction<? super T> floatFunction) |
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<V> MutableBag<V> |
collectIf(Predicate<? super T> predicate,
Function<? super T,? extends V> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection, but only for those elements which return true upon evaluation of the predicate.
|
MutableIntBag |
collectInt(IntFunction<? super T> function) |
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
MutableLongBag |
collectLong(LongFunction<? super T> longFunction) |
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
MutableShortBag |
collectShort(ShortFunction<? super T> shortFunction) |
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<P,V> MutableBag<V> |
collectWith(Function2<? super T,? super P,? extends V> function,
P parameter) |
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
<V> MutableBag<V> |
flatCollect(Function<? super T,? extends Iterable<V>> function) |
flatCollect is a special case of RichIterable.collect(Function). |
void |
forEachWithOccurrences(ObjectIntProcedure<? super T> objectIntProcedure) |
For each distinct item, with the number of occurrences, execute the specified procedure.
|
<V> MutableBagMultimap<V,T> |
groupBy(Function<? super T,? extends V> function) |
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V> MutableBagMultimap<V,T> |
groupByEach(Function<? super T,? extends Iterable<V>> function) |
Similar to
RichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value. |
MutableBag<T> |
newEmpty() |
Creates a new empty mutable version of the same collection type.
|
int |
occurrencesOf(Object item) |
The occurrences of a distinct item in the bag.
|
static <E,B extends MutableBag<E>> |
of(B bag) |
This method will take a MutableBag and wrap it directly in a SynchronizedBag.
|
static <E,B extends MutableBag<E>> |
of(B bag,
Object lock) |
This method will take a MutableBag and wrap it directly in a SynchronizedBag.
|
PartitionMutableBag<T> |
partition(Predicate<? super T> predicate) |
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableBag<T> |
partitionWith(Predicate2<? super T,? super P> predicate,
P parameter) |
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableBag<T> |
reject(Predicate<? super T> predicate) |
Returns all elements of the source collection that return false when evaluating of the predicate.
|
<P> MutableBag<T> |
rejectWith(Predicate2<? super T,? super P> predicate,
P parameter) |
Similar to
RichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
boolean |
removeOccurrences(Object item,
int occurrences) |
|
MutableBag<T> |
select(Predicate<? super T> predicate) |
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableBag<T> |
selectByOccurrences(IntPredicate predicate) |
Returns all elements of the bag that have a number of occurrences that satisfy the predicate.
|
<S> MutableBag<S> |
selectInstancesOf(Class<S> clazz) |
Returns all elements of the source collection that are instances of the Class
clazz. |
<P> MutableBag<T> |
selectWith(Predicate2<? super T,? super P> predicate,
P parameter) |
Similar to
RichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
boolean |
setOccurrences(T item,
int occurrences) |
|
int |
sizeDistinct() |
The size of the Bag when counting only distinct elements.
|
MutableBag<T> |
tap(Procedure<? super T> procedure) |
Executes the Procedure for each element in the iterable and returns
this. |
ImmutableBag<T> |
toImmutable() |
Converts this
MutableCollection to an ImmutableCollection. |
MutableMap<T,Integer> |
toMapOfItemToCount() |
Converts the Bag to a Map of the Item type to its count as an Integer.
|
MutableList<ObjectIntPair<T>> |
topOccurrences(int count) |
Returns the
count most frequently occurring items. |
String |
toStringOfItemToCount() |
Returns a string representation of this bag.
|
MutableBag<T> |
with(T element) |
This method allows mutable and fixed size collections the ability to add elements to their existing elements.
|
MutableBag<T> |
withAll(Iterable<? extends T> elements) |
This method allows mutable and fixed size collections the ability to add multiple elements to their existing
elements.
|
MutableBag<T> |
without(T element) |
This method allows mutable and fixed size collections the ability to remove elements from their existing elements.
|
MutableBag<T> |
withoutAll(Iterable<? extends T> elements) |
This method allows mutable and fixed size collections the ability to remove multiple elements from their existing
elements.
|
<S> MutableBag<Pair<T,S>> |
zip(Iterable<S> that) |
Deprecated.
in 6.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<T,Integer>> |
zipWithIndex() |
Deprecated.
in 6.0. Use
OrderedIterable.zipWithIndex() instead. |
add, addAll, addAllIterable, aggregateBy, aggregateInPlaceBy, clear, groupByUniqueKey, injectIntoWith, remove, removeAll, removeAllIterable, removeIf, removeIfWith, retainAll, retainAllIterable, selectAndRejectWith, sumByDouble, sumByFloat, sumByInt, sumByLongallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, equals, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, hashCode, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndexequals, hashCode, reduceInPlace, reduceInPlace, summarizeDouble, summarizeFloat, summarizeInt, summarizeLongadd, addAll, clear, contains, containsAll, equals, hashCode, isEmpty, iterator, parallelStream, remove, removeAll, removeIf, retainAll, size, spliterator, stream, toArray, toArrayforEach, forEachWith, forEachWithIndexaddAllIterable, aggregateBy, aggregateInPlaceBy, groupByUniqueKey, injectIntoWith, removeAllIterable, removeIf, removeIfWith, retainAllIterable, selectAndRejectWith, sumByDouble, sumByFloat, sumByInt, sumByLongequals, getClass, hashCode, notify, notifyAll, wait, wait, waitallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, flatCollect, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reduce, reject, rejectWith, select, selectWith, size, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndexpublic SynchronizedBag(MutableBag<T> bag, Object newLock)
public static <E,B extends MutableBag<E>> SynchronizedBag<E> of(B bag)
public static <E,B extends MutableBag<E>> SynchronizedBag<E> of(B bag, Object lock)
public MutableBag<T> with(T element)
MutableCollection
MutableCollection<String> list = list.with("1");
list = list.with("2");
return list;
In the case of FixedSizeCollection a new instance of MutableCollection will be returned by with, and any
variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling add on itself.with in interface MutableBag<T>with in interface MutableBagIterable<T>with in interface MutableCollection<T>Collection.add(Object)public MutableBag<T> without(T element)
MutableCollection
MutableCollection<String> list = list.without("1");
list = list.without("2");
return list;
In the case of FixedSizeCollection a new instance of MutableCollection will be returned by without, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling remove on itself.without in interface MutableBag<T>without in interface MutableBagIterable<T>without in interface MutableCollection<T>Collection.remove(Object)public MutableBag<T> withAll(Iterable<? extends T> elements)
MutableCollection
MutableCollection<String> list = list.withAll(FastList.newListWith("1", "2"));
In the case of FixedSizeCollection a new instance of MutableCollection will be returned by withAll, and
any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling addAll on itself.withAll in interface MutableBag<T>withAll in interface MutableBagIterable<T>withAll in interface MutableCollection<T>Collection.addAll(Collection)public MutableBag<T> withoutAll(Iterable<? extends T> elements)
MutableCollection
MutableCollection<String> list = list.withoutAll(FastList.newListWith("1", "2"));
In the case of FixedSizeCollection a new instance of MutableCollection will be returned by withoutAll,
and any variables that previously referenced the original collection will need to be redirected to reference the
new instance. For other MutableCollection types you will replace the reference to collection with the same
collection, since the instance will return "this" after calling removeAll on itself.withoutAll in interface MutableBag<T>withoutAll in interface MutableBagIterable<T>withoutAll in interface MutableCollection<T>Collection.removeAll(Collection)public MutableBag<T> newEmpty()
MutableCollectionnewEmpty in interface MutableBag<T>newEmpty in interface MutableCollection<T>public int addOccurrences(T item, int occurrences)
MutableBagIterableoccurrences for an item. If the item does not exist, then the item is added to the bag.
For Example:
MutableBagIterable<String> names = Bags.mutable.of("A", "B", "B");
Assert.assertEquals(4, names.addOccurrences("A", 3));
addOccurrences in interface MutableBagIterable<T>public boolean removeOccurrences(Object item, int occurrences)
removeOccurrences in interface MutableBagIterable<T>public boolean setOccurrences(T item, int occurrences)
setOccurrences in interface MutableBagIterable<T>public MutableMap<T,Integer> toMapOfItemToCount()
BagtoMapOfItemToCount in interface Bag<T>toMapOfItemToCount in interface MutableBag<T>toMapOfItemToCount in interface MutableBagIterable<T>public MutableBag<T> selectByOccurrences(IntPredicate predicate)
BagselectByOccurrences in interface Bag<T>selectByOccurrences in interface MutableBag<T>selectByOccurrences in interface MutableBagIterable<T>selectByOccurrences in interface UnsortedBag<T>public MutableList<ObjectIntPair<T>> topOccurrences(int count)
Bagcount most frequently occurring items.
In the event of a tie, all of the items with the number of occurrences that match the occurrences of the last
item will be returned.topOccurrences in interface Bag<T>topOccurrences in interface MutableBagIterable<T>public MutableList<ObjectIntPair<T>> bottomOccurrences(int count)
Bagcount least frequently occurring items.
In the event of a tie, all of the items with the number of occurrences that match the occurrences of the last
item will be returned.bottomOccurrences in interface Bag<T>bottomOccurrences in interface MutableBagIterable<T>public void forEachWithOccurrences(ObjectIntProcedure<? super T> objectIntProcedure)
BagforEachWithOccurrences in interface Bag<T>public int occurrencesOf(Object item)
BagoccurrencesOf in interface Bag<T>public int sizeDistinct()
BagsizeDistinct in interface Bag<T>public String toStringOfItemToCount()
Bag
Assert.assertEquals("{1=1, 2=2, 3=3}", Bags.mutable.with(1, 2, 2, 3, 3, 3).toStringOfItemToCount());
This string representation is similar to AbstractMap.toString(), not RichIterable.toString(),
whereas the toString() implementation for a Bag is consistent with RichIterable.toString().toStringOfItemToCount in interface Bag<T>public MutableBag<T> tap(Procedure<? super T> procedure)
RichIterablethis.
Example using a Java 8 lambda expression:
RichIterable<Person> tapped =
people.tap(person -> LOGGER.info(person.getName()));
Example using an anonymous inner class:
RichIterable<Person> tapped =
people.tap(new Procedure<Person>()
{
public void value(Person person)
{
LOGGER.info(person.getName());
}
});
tap in interface Bag<T>tap in interface MutableBag<T>tap in interface MutableBagIterable<T>tap in interface MutableCollection<T>tap in interface RichIterable<T>tap in interface UnsortedBag<T>RichIterable.each(Procedure),
InternalIterable.forEach(Procedure)public MutableBag<T> select(Predicate<? super T> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> selected =
people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.select(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getCity().equals("London");
}
});select in interface Bag<T>select in interface MutableBag<T>select in interface MutableBagIterable<T>select in interface MutableCollection<T>select in interface RichIterable<T>select in interface UnsortedBag<T>public <P> MutableBag<T> selectWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterableRichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected =
people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.selectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() >= age;
}
}, Integer.valueOf(18));
selectWith in interface Bag<T>selectWith in interface MutableBag<T>selectWith in interface MutableBagIterable<T>selectWith in interface MutableCollection<T>selectWith in interface RichIterable<T>selectWith in interface UnsortedBag<T>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public MutableBag<T> reject(Predicate<? super T> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected =
people.reject(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.person.getLastName().equals("Smith");
}
});
reject in interface Bag<T>reject in interface MutableBag<T>reject in interface MutableBagIterable<T>reject in interface MutableCollection<T>reject in interface RichIterable<T>reject in interface UnsortedBag<T>predicate - a Predicate to use as the reject criteriaPredicate.accept(Object) method to evaluate to falsepublic <P> MutableBag<T> rejectWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterableRichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected =
people.rejectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() < age;
}
}, Integer.valueOf(18));
rejectWith in interface Bag<T>rejectWith in interface MutableBag<T>rejectWith in interface MutableBagIterable<T>rejectWith in interface MutableCollection<T>rejectWith in interface RichIterable<T>rejectWith in interface UnsortedBag<T>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public PartitionMutableBag<T> partition(Predicate<? super T> predicate)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getState().getName().equals("New York");
}
});
partition in interface Bag<T>partition in interface MutableBag<T>partition in interface MutableBagIterable<T>partition in interface MutableCollection<T>partition in interface RichIterable<T>partition in interface UnsortedBag<T>public <P> PartitionMutableBag<T> partitionWith(Predicate2<? super T,? super P> predicate, P parameter)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith(new Predicate2<Person, String>()
{
public boolean accept(Person person, String state)
{
return person.getAddress().getState().getName().equals(state);
}
}, "New York");
partitionWith in interface Bag<T>partitionWith in interface MutableBag<T>partitionWith in interface MutableBagIterable<T>partitionWith in interface MutableCollection<T>partitionWith in interface RichIterable<T>public MutableBooleanBag collectBoolean(BooleanFunction<? super T> booleanFunction)
RichIterableboolean iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses =
people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses =
people.collectBoolean(new BooleanFunction<Person>()
{
public boolean booleanValueOf(Person person)
{
return person.hasDrivingLicense();
}
});
collectBoolean in interface MutableBag<T>collectBoolean in interface MutableCollection<T>collectBoolean in interface RichIterable<T>collectBoolean in interface UnsortedBag<T>public MutableByteBag collectByte(ByteFunction<? super T> byteFunction)
RichIterablebyte iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes =
people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes =
people.collectByte(new ByteFunction<Person>()
{
public byte byteValueOf(Person person)
{
return person.getCode();
}
});
collectByte in interface MutableBag<T>collectByte in interface MutableCollection<T>collectByte in interface RichIterable<T>collectByte in interface UnsortedBag<T>public MutableCharBag collectChar(CharFunction<? super T> charFunction)
RichIterablechar iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars =
people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars =
people.collectChar(new CharFunction<Person>()
{
public char charValueOf(Person person)
{
return person.getMiddleInitial();
}
});
collectChar in interface MutableBag<T>collectChar in interface MutableCollection<T>collectChar in interface RichIterable<T>collectChar in interface UnsortedBag<T>public MutableDoubleBag collectDouble(DoubleFunction<? super T> doubleFunction)
RichIterabledouble iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles =
people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles =
people.collectDouble(new DoubleFunction<Person>()
{
public double doubleValueOf(Person person)
{
return person.getMilesFromNorthPole();
}
});
collectDouble in interface MutableBag<T>collectDouble in interface MutableCollection<T>collectDouble in interface RichIterable<T>collectDouble in interface UnsortedBag<T>public MutableFloatBag collectFloat(FloatFunction<? super T> floatFunction)
RichIterablefloat iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats =
people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats =
people.collectFloat(new FloatFunction<Person>()
{
public float floatValueOf(Person person)
{
return person.getHeightInInches();
}
});
collectFloat in interface MutableBag<T>collectFloat in interface MutableCollection<T>collectFloat in interface RichIterable<T>collectFloat in interface UnsortedBag<T>public MutableIntBag collectInt(IntFunction<? super T> function)
RichIterableint iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints =
people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints =
people.collectInt(new IntFunction<Person>()
{
public int intValueOf(Person person)
{
return person.getAge();
}
});
collectInt in interface MutableBag<T>collectInt in interface MutableCollection<T>collectInt in interface RichIterable<T>collectInt in interface UnsortedBag<T>public MutableLongBag collectLong(LongFunction<? super T> longFunction)
RichIterablelong iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs =
people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs =
people.collectLong(new LongFunction<Person>()
{
public long longValueOf(Person person)
{
return person.getGuid();
}
});
collectLong in interface MutableBag<T>collectLong in interface MutableCollection<T>collectLong in interface RichIterable<T>collectLong in interface UnsortedBag<T>public MutableShortBag collectShort(ShortFunction<? super T> shortFunction)
RichIterableshort iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts =
people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts =
people.collectShort(new ShortFunction<Person>()
{
public short shortValueOf(Person person)
{
return person.getNumberOfJunkMailItemsReceivedPerMonth();
}
});
collectShort in interface MutableBag<T>collectShort in interface MutableCollection<T>collectShort in interface RichIterable<T>collectShort in interface UnsortedBag<T>public <S> MutableBag<S> selectInstancesOf(Class<S> clazz)
RichIterableclazz.
RichIterable<Integer> integers =
List.mutable.with(new Integer(0), new Long(0L), new Double(0.0)).selectInstancesOf(Integer.class);
selectInstancesOf in interface Bag<T>selectInstancesOf in interface MutableBag<T>selectInstancesOf in interface MutableBagIterable<T>selectInstancesOf in interface MutableCollection<T>selectInstancesOf in interface RichIterable<T>selectInstancesOf in interface UnsortedBag<T>public <V> MutableBag<V> collect(Function<? super T,? extends V> function)
RichIterableExample using a Java 8 lambda expression:
RichIterable<String> names =
people.collect(person -> person.getFirstName() + " " + person.getLastName());
Example using an anonymous inner class:
RichIterable<String> names =
people.collect(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getFirstName() + " " + person.getLastName();
}
});
collect in interface MutableBag<T>collect in interface MutableCollection<T>collect in interface RichIterable<T>collect in interface UnsortedBag<T>@Deprecated public MutableSet<Pair<T,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex() instead.RichIterableRichIterable with its indices.zipWithIndex in interface Bag<T>zipWithIndex in interface MutableBag<T>zipWithIndex in interface MutableBagIterable<T>zipWithIndex in interface MutableCollection<T>zipWithIndex in interface RichIterable<T>zipWithIndex in interface UnsortedBag<T>RichIterable containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)public <P,V> MutableBag<V> collectWith(Function2<? super T,? super P,? extends V> function, P parameter)
RichIterableRichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction =
new Function2<Integer, Integer, Integer>()
{
public Integer value(Integer each, Integer parameter)
{
return each + parameter;
}
};
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith in interface MutableBag<T>collectWith in interface MutableCollection<T>collectWith in interface RichIterable<T>collectWith in interface UnsortedBag<T>function - A Function2 to use as the collect transformation functionparameter - A parameter to pass in for evaluation of the second argument P in functionRichIterable that contains the transformed elements returned by Function2.value(Object, Object)RichIterable.collect(Function)public <V> MutableBag<V> collectIf(Predicate<? super T> predicate, Function<? super T,? extends V> function)
RichIterableExample using a Java 8 lambda and method reference:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(e -> e != null, Object::toString);
Example using Predicates factory:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString());
collectIf in interface MutableBag<T>collectIf in interface MutableCollection<T>collectIf in interface RichIterable<T>collectIf in interface UnsortedBag<T>public <V> MutableBag<V> flatCollect(Function<? super T,? extends Iterable<V>> function)
RichIterableflatCollect is a special case of RichIterable.collect(Function). With collect, when the Function returns
a collection, the result is a collection of collections. flatCollect outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person class, and each Person has a list of Address objects. Take the following Function:
Function<Person, List<Address>> addressFunction = Person::getAddresses; RichIterable<Person> people = ...;Using
collect returns a collection of collections of addresses.
RichIterable<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect returns a single flattened list of addresses.
RichIterable<Address> addresses = people.flatCollect(addressFunction);
flatCollect in interface MutableBag<T>flatCollect in interface MutableCollection<T>flatCollect in interface RichIterable<T>flatCollect in interface UnsortedBag<T>function - The Function to applyfunctionpublic <V> MutableBagMultimap<V,T> groupBy(Function<? super T,? extends V> function)
RichIterableExample using a Java 8 method reference:
Multimap<String, Person> peopleByLastName =
people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName =
people.groupBy(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getLastName();
}
});
groupBy in interface Bag<T>groupBy in interface MutableBag<T>groupBy in interface MutableBagIterable<T>groupBy in interface MutableCollection<T>groupBy in interface RichIterable<T>groupBy in interface UnsortedBag<T>public <V> MutableBagMultimap<V,T> groupByEach(Function<? super T,? extends Iterable<V>> function)
RichIterableRichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value.groupByEach in interface Bag<T>groupByEach in interface MutableBag<T>groupByEach in interface MutableBagIterable<T>groupByEach in interface MutableCollection<T>groupByEach in interface RichIterable<T>groupByEach in interface UnsortedBag<T>@Deprecated public <S> MutableBag<Pair<T,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable) instead.RichIterableRichIterable formed from this RichIterable and another RichIterable by
combining corresponding elements in pairs. If one of the two RichIterables is longer than the other, its
remaining elements are ignored.zip in interface MutableBag<T>zip in interface MutableCollection<T>zip in interface RichIterable<T>zip in interface UnsortedBag<T>S - the type of the second half of the returned pairsthat - The RichIterable providing the second half of each result pairRichIterable containing pairs consisting of corresponding elements of this
RichIterable and that. The length of the returned RichIterable is the minimum of the lengths of
this RichIterable and that.public MutableBag<T> asUnmodifiable()
MutableCollectionCollections.unmodifiableCollection(this) with a return type that supports the full
iteration protocols available on MutableCollection. Methods which would
mutate the underlying collection will throw UnsupportedOperationExceptions.asUnmodifiable in interface MutableBag<T>asUnmodifiable in interface MutableCollection<T>Collections.unmodifiableCollection(Collection)public MutableBag<T> asSynchronized()
MutableCollectionCollections.synchronizedCollection(this) only with a return type that supports the full
iteration protocols available on MutableCollection.
The preferred way of iterating over a synchronized collection is to use the internal iteration
methods which are properly synchronized internally.
MutableCollection synchedCollection = collection.asSynchronized();
...
synchedCollection.forEach(each -> ... );
synchedCollection.select(each -> ... );
synchedCollection.collect(each -> ... );
If you want to iterate using an imperative style, you must protect external iterators using
a synchronized block. This includes explicit iterators as well as JDK 5 style for loops.
asSynchronized in interface MutableBag<T>asSynchronized in interface MutableCollection<T>Collections.synchronizedCollection(Collection)public ImmutableBag<T> toImmutable()
MutableCollectionMutableCollection to an ImmutableCollection.toImmutable in interface Bag<T>toImmutable in interface MutableBag<T>toImmutable in interface MutableCollection<T>Copyright © 2004–2017. All rights reserved.