Serializable, Cloneable, Iterable<K>, Map<K,V>, BiMap<K,V>, MutableBiMap<K,V>, InternalIterable<K>, MapIterable<K,V>, MutableMapIterable<K,V>, RichIterable<K>public class SynchronizedBiMap<K,V> extends AbstractSynchronizedMapIterable<K,V> implements MutableBiMap<K,V>, Serializable
| Modifier and Type | Method | Description |
|---|---|---|
MutableBiMap<K,V> |
asSynchronized() |
Returns a synchronized wrapper backed by this map.
|
MutableBiMap<K,V> |
asUnmodifiable() |
Returns an unmodifiable view of this map.
|
MutableBiMap<K,V> |
clone() |
|
<V1> RichIterable<V1> |
collect(Function<? super V,? extends V1> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection.
|
<K2,V2> MutableBiMap<K2,V2> |
collect(Function2<? super K,? super V,Pair<K2,V2>> function) |
For each key and value of the map the function is evaluated.
|
BooleanIterable |
collectBoolean(BooleanFunction<? super V> booleanFunction) |
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
ByteIterable |
collectByte(ByteFunction<? super V> byteFunction) |
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
CharIterable |
collectChar(CharFunction<? super V> charFunction) |
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
DoubleIterable |
collectDouble(DoubleFunction<? super V> doubleFunction) |
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
FloatIterable |
collectFloat(FloatFunction<? super V> floatFunction) |
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<V1> RichIterable<V1> |
collectIf(Predicate<? super V> predicate,
Function<? super V,? extends V1> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection, but only for those elements which return true upon evaluation of the predicate.
|
IntIterable |
collectInt(IntFunction<? super V> intFunction) |
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
LongIterable |
collectLong(LongFunction<? super V> longFunction) |
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
ShortIterable |
collectShort(ShortFunction<? super V> shortFunction) |
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<R> MutableBiMap<K,R> |
collectValues(Function2<? super K,? super V,? extends R> function) |
For each key and value of the map the function is evaluated.
|
<P,V1> RichIterable<V1> |
collectWith(Function2<? super V,? super P,? extends V1> function,
P parameter) |
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
Set<Map.Entry<K,V>> |
entrySet() |
|
<V1> RichIterable<V1> |
flatCollect(Function<? super V,? extends Iterable<V1>> function) |
flatCollect is a special case of RichIterable.collect(Function). |
MutableSetMultimap<V,K> |
flip() |
Given a map from Domain -> Range return a multimap from Range -> Domain.
|
MutableBiMap<V,K> |
flipUniqueValues() |
Return the MapIterable that is obtained by flipping the direction of this map and making the associations
from value to key.
|
V |
forcePut(K key,
V value) |
Similar to
MutableBiMap.put(Object, Object), except that it quietly removes any existing entry with the same
value before putting the key-value pair. |
<V1> MutableSetMultimap<V1,V> |
groupBy(Function<? super V,? extends V1> function) |
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<V1> MutableSetMultimap<V1,V> |
groupByEach(Function<? super V,? extends Iterable<V1>> function) |
Similar to
RichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value. |
<VV> MutableBiMap<VV,V> |
groupByUniqueKey(Function<? super V,? extends VV> function) |
For each element of the iterable, the function is evaluated and he results of these evaluations are collected
into a new map, where the transformed value is the key.
|
MutableBiMap<V,K> |
inverse() |
Returns an inversed view of this BiMap, where the associations are in the direction of this bimap's values to keys.
|
Set<K> |
keySet() |
|
RichIterable<K> |
keysView() |
Returns an unmodifiable lazy iterable wrapped around the keySet for the map.
|
MutableBiMap<K,V> |
newEmpty() |
Creates a new instance of the same type, using the default capacity and growth parameters.
|
static <K,V> SynchronizedBiMap<K,V> |
of(MutableBiMap<K,V> map) |
This method will take a MutableBiMap and wrap it directly in a SynchronizedBiMap.
|
PartitionMutableSet<V> |
partition(Predicate<? super V> predicate) |
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableSet<V> |
partitionWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableSet<V> |
reject(Predicate<? super V> predicate) |
Returns all elements of the source collection that return false when evaluating of the predicate.
|
MutableBiMap<K,V> |
reject(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is false,
that key and value are returned in a new map.
|
<P> MutableSet<V> |
rejectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
MutableSet<V> |
select(Predicate<? super V> predicate) |
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableBiMap<K,V> |
select(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is true,
that key and value are returned in a new map.
|
<S> MutableSet<S> |
selectInstancesOf(Class<S> clazz) |
Returns all elements of the source collection that are instances of the Class
clazz. |
<P> MutableSet<V> |
selectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
MutableBiMap<K,V> |
tap(Procedure<? super V> procedure) |
Executes the Procedure for each value of the map and returns
this. |
ImmutableBiMap<K,V> |
toImmutable() |
Converts the BiMap to an ImmutableBiMap.
|
Collection<V> |
values() |
|
RichIterable<V> |
valuesView() |
Returns an unmodifiable lazy iterable wrapped around the values for the map.
|
MutableBiMap<K,V> |
withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs) |
Convenience var-args version of withAllKeyValues
|
MutableBiMap<K,V> |
withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withKeyValue(K key,
V value) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableBiMap<K,V> |
withoutAllKeys(Iterable<? extends K> keys) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
MutableBiMap<K,V> |
withoutKey(K key) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
<S> MutableSet<Pair<V,S>> |
zip(Iterable<S> that) |
Deprecated.
in 8.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<V,Integer>> |
zipWithIndex() |
Deprecated.
in 8.0. Use
OrderedIterable.zipWithIndex() instead. |
add, aggregateBy, aggregateInPlaceBy, clear, containsKey, containsValue, detect, detectOptional, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, getIfAbsentValue, getIfAbsentWith, ifPresentApply, keyValuesView, put, putAll, remove, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWithallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, equals, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, hashCode, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndexforEach, forEachWith, forEachWithIndexforEach, iterator, spliteratorclear, compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, entry, equals, forEach, get, getOrDefault, hashCode, isEmpty, merge, of, of, of, of, of, of, of, of, of, of, of, ofEntries, putAll, putIfAbsent, remove, remove, replace, replace, replaceAll, sizecontainsKey, containsValue, detect, detectOptional, equals, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentValue, getIfAbsentWith, hashCode, ifPresentApply, keyValuesView, toStringputadd, aggregateBy, aggregateInPlaceBy, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWithequals, getClass, hashCode, notify, notifyAll, wait, wait, waitallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, flatCollect, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reduce, reduceInPlace, reduceInPlace, reject, rejectWith, select, selectWith, size, summarizeDouble, summarizeFloat, summarizeInt, summarizeLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, zip, zipWithIndexpublic static <K,V> SynchronizedBiMap<K,V> of(MutableBiMap<K,V> map)
public V forcePut(K key, V value)
MutableBiMapMutableBiMap.put(Object, Object), except that it quietly removes any existing entry with the same
value before putting the key-value pair.forcePut in interface MutableBiMap<K,V>public MutableBiMap<K,V> asSynchronized()
MutableMapIterableCollections.synchronizedMap(this) only with the more feature rich return type of
MutableMapIterable.
The preferred way of iterating over a synchronized map is to use the forEachKey(), forEachValue() and forEachKeyValue() methods which are properly synchronized internally.
MutableMap synchedMap = map.asSynchronized(); synchedMap.forEachKey(key -> ... ); synchedMap.forEachValue(value -> ... ); synchedMap.forEachKeyValue((key, value) -> ... );
If you want to iterate imperatively over the keySet(), values(), or entrySet(), you will need to protect the iteration by wrapping the code in a synchronized block on the map.
asSynchronized in interface MutableBiMap<K,V>asSynchronized in interface MutableMapIterable<K,V>Collections.synchronizedMap(Map)public MutableBiMap<K,V> asUnmodifiable()
MutableMapIterableCollections.unmodifiableMap(this) only with a return type that supports the full
iteration protocols available on MutableMapIterable. Methods which would
mutate the underlying map will throw UnsupportedOperationExceptions.asUnmodifiable in interface MutableBiMap<K,V>asUnmodifiable in interface MutableMapIterable<K,V>Collections.unmodifiableMap(Map)public MutableBiMap<K,V> clone()
public MutableBiMap<K,V> tap(Procedure<? super V> procedure)
MapIterablethis.
return peopleByCity.tap(person -> LOGGER.info(person.getName()));
tap in interface BiMap<K,V>tap in interface MapIterable<K,V>tap in interface MutableBiMap<K,V>tap in interface MutableMapIterable<K,V>tap in interface RichIterable<K>InternalIterable.forEach(Procedure)public <K2,V2> MutableBiMap<K2,V2> collect(Function2<? super K,? super V,Pair<K2,V2>> function)
BiMap
MapIterable<String, String> collected =
peopleByCity.collect((City city, Person person) -> Pair.of(city.getCountry(), person.getAddress().getCity()));
Implementations are expected to delegate to MutableBiMap.put(Object, Object),
ImmutableBiMap.newWithKeyValue(Object, Object), or equivalent, not MutableBiMap.forcePut(Object, Object).public <R> MutableBiMap<K,R> collectValues(Function2<? super K,? super V,? extends R> function)
BiMap
MapIterable<City, String> collected =
peopleByCity.collectValues((City city, Person person) -> person.getFirstName() + " " + person.getLastName());
Implementations are expected to delegate to MutableBiMap.put(Object, Object),
ImmutableBiMap.newWithKeyValue(Object, Object), or equivalent, not MutableBiMap.forcePut(Object, Object).collectValues in interface BiMap<K,V>collectValues in interface MapIterable<K,V>collectValues in interface MutableBiMap<K,V>collectValues in interface MutableMapIterable<K,V>public MutableSet<V> select(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> selected =
people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.select(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getCity().equals("London");
}
});select in interface BiMap<K,V>select in interface MutableBiMap<K,V>select in interface MutableMapIterable<K,V>select in interface RichIterable<K>public MutableBiMap<K,V> select(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> selected =
peopleByCity.select((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
public <P> MutableSet<V> selectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableRichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected =
people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.selectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() >= age;
}
}, Integer.valueOf(18));
selectWith in interface BiMap<K,V>selectWith in interface MutableBiMap<K,V>selectWith in interface MutableMapIterable<K,V>selectWith in interface RichIterable<K>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public <S> MutableSet<S> selectInstancesOf(Class<S> clazz)
RichIterableclazz.
RichIterable<Integer> integers =
List.mutable.with(new Integer(0), new Long(0L), new Double(0.0)).selectInstancesOf(Integer.class);
selectInstancesOf in interface BiMap<K,V>selectInstancesOf in interface MutableBiMap<K,V>selectInstancesOf in interface MutableMapIterable<K,V>selectInstancesOf in interface RichIterable<K>public MutableSet<V> reject(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected =
people.reject(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.person.getLastName().equals("Smith");
}
});
reject in interface BiMap<K,V>reject in interface MutableBiMap<K,V>reject in interface MutableMapIterable<K,V>reject in interface RichIterable<K>predicate - a Predicate to use as the reject criteriaPredicate.accept(Object) method to evaluate to falsepublic MutableBiMap<K,V> reject(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> rejected =
peopleByCity.reject((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
public <P> MutableSet<V> rejectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableRichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected =
people.rejectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() < age;
}
}, Integer.valueOf(18));
rejectWith in interface BiMap<K,V>rejectWith in interface MutableBiMap<K,V>rejectWith in interface MutableMapIterable<K,V>rejectWith in interface RichIterable<K>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public PartitionMutableSet<V> partition(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getState().getName().equals("New York");
}
});
partition in interface BiMap<K,V>partition in interface MutableBiMap<K,V>partition in interface MutableMapIterable<K,V>partition in interface RichIterable<K>public <P> PartitionMutableSet<V> partitionWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith(new Predicate2<Person, String>()
{
public boolean accept(Person person, String state)
{
return person.getAddress().getState().getName().equals(state);
}
}, "New York");
partitionWith in interface BiMap<K,V>partitionWith in interface MutableBiMap<K,V>partitionWith in interface RichIterable<K>public <V1> RichIterable<V1> collect(Function<? super V,? extends V1> function)
RichIterableExample using a Java 8 lambda expression:
RichIterable<String> names =
people.collect(person -> person.getFirstName() + " " + person.getLastName());
Example using an anonymous inner class:
RichIterable<String> names =
people.collect(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getFirstName() + " " + person.getLastName();
}
});
collect in interface RichIterable<K>public BooleanIterable collectBoolean(BooleanFunction<? super V> booleanFunction)
RichIterableboolean iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses =
people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses =
people.collectBoolean(new BooleanFunction<Person>()
{
public boolean booleanValueOf(Person person)
{
return person.hasDrivingLicense();
}
});
collectBoolean in interface RichIterable<K>public ByteIterable collectByte(ByteFunction<? super V> byteFunction)
RichIterablebyte iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes =
people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes =
people.collectByte(new ByteFunction<Person>()
{
public byte byteValueOf(Person person)
{
return person.getCode();
}
});
collectByte in interface RichIterable<K>public CharIterable collectChar(CharFunction<? super V> charFunction)
RichIterablechar iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars =
people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars =
people.collectChar(new CharFunction<Person>()
{
public char charValueOf(Person person)
{
return person.getMiddleInitial();
}
});
collectChar in interface RichIterable<K>public DoubleIterable collectDouble(DoubleFunction<? super V> doubleFunction)
RichIterabledouble iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles =
people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles =
people.collectDouble(new DoubleFunction<Person>()
{
public double doubleValueOf(Person person)
{
return person.getMilesFromNorthPole();
}
});
collectDouble in interface RichIterable<K>public FloatIterable collectFloat(FloatFunction<? super V> floatFunction)
RichIterablefloat iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats =
people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats =
people.collectFloat(new FloatFunction<Person>()
{
public float floatValueOf(Person person)
{
return person.getHeightInInches();
}
});
collectFloat in interface RichIterable<K>public IntIterable collectInt(IntFunction<? super V> intFunction)
RichIterableint iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints =
people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints =
people.collectInt(new IntFunction<Person>()
{
public int intValueOf(Person person)
{
return person.getAge();
}
});
collectInt in interface RichIterable<K>public LongIterable collectLong(LongFunction<? super V> longFunction)
RichIterablelong iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs =
people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs =
people.collectLong(new LongFunction<Person>()
{
public long longValueOf(Person person)
{
return person.getGuid();
}
});
collectLong in interface RichIterable<K>public ShortIterable collectShort(ShortFunction<? super V> shortFunction)
RichIterableshort iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts =
people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts =
people.collectShort(new ShortFunction<Person>()
{
public short shortValueOf(Person person)
{
return person.getNumberOfJunkMailItemsReceivedPerMonth();
}
});
collectShort in interface RichIterable<K>public <P,V1> RichIterable<V1> collectWith(Function2<? super V,? super P,? extends V1> function, P parameter)
RichIterableRichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction =
new Function2<Integer, Integer, Integer>()
{
public Integer value(Integer each, Integer parameter)
{
return each + parameter;
}
};
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith in interface RichIterable<K>function - A Function2 to use as the collect transformation functionparameter - A parameter to pass in for evaluation of the second argument P in functionRichIterable that contains the transformed elements returned by Function2.value(Object, Object)RichIterable.collect(Function)public <V1> RichIterable<V1> collectIf(Predicate<? super V> predicate, Function<? super V,? extends V1> function)
RichIterableExample using a Java 8 lambda and method reference:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(e -> e != null, Object::toString);
Example using Predicates factory:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString());
collectIf in interface RichIterable<K>public <V1> RichIterable<V1> flatCollect(Function<? super V,? extends Iterable<V1>> function)
RichIterableflatCollect is a special case of RichIterable.collect(Function). With collect, when the Function returns
a collection, the result is a collection of collections. flatCollect outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person class, and each Person has a list of Address objects. Take the following Function:
Function<Person, List<Address>> addressFunction = Person::getAddresses; RichIterable<Person> people = ...;Using
collect returns a collection of collections of addresses.
RichIterable<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect returns a single flattened list of addresses.
RichIterable<Address> addresses = people.flatCollect(addressFunction);
flatCollect in interface RichIterable<K>function - The Function to applyfunctionpublic <V1> MutableSetMultimap<V1,V> groupBy(Function<? super V,? extends V1> function)
RichIterableExample using a Java 8 method reference:
Multimap<String, Person> peopleByLastName =
people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName =
people.groupBy(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getLastName();
}
});
groupBy in interface BiMap<K,V>groupBy in interface MutableBiMap<K,V>groupBy in interface MutableMapIterable<K,V>groupBy in interface RichIterable<K>public <V1> MutableSetMultimap<V1,V> groupByEach(Function<? super V,? extends Iterable<V1>> function)
RichIterableRichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value.groupByEach in interface BiMap<K,V>groupByEach in interface MutableBiMap<K,V>groupByEach in interface MutableMapIterable<K,V>groupByEach in interface RichIterable<K>public MutableSetMultimap<V,K> flip()
MapIterableSince the keys in the input are unique, the values in the output are unique, so the return type should be a SetMultimap. However since SetMultimap and SortedSetMultimap don't inherit from one another, SetMultimap here does not allow SortedMapIterable to have a SortedSetMultimap return. Thus we compromise and call this Multimap, even though all implementations will be a SetMultimap or SortedSetMultimap.
public MutableBiMap<K,V> newEmpty()
MutableMapIterablenewEmpty in interface MutableBiMap<K,V>newEmpty in interface MutableMapIterable<K,V>public MutableBiMap<V,K> inverse()
BiMappublic MutableBiMap<V,K> flipUniqueValues()
MapIterable
MapIterable<Integer, String> map = this.newMapWithKeysValues(1, "1", 2, "2", 3, "3");
MapIterable<String, Integer> result = map.flipUniqueValues();
Assert.assertTrue(result.equals(UnifiedMap.newWithKeysValues("1", 1, "2", 2, "3", 3)));
flipUniqueValues in interface BiMap<K,V>flipUniqueValues in interface MapIterable<K,V>flipUniqueValues in interface MutableBiMap<K,V>flipUniqueValues in interface MutableMapIterable<K,V>public RichIterable<K> keysView()
MapIterablekeysView in interface MapIterable<K,V>public RichIterable<V> valuesView()
MapIterablevaluesView in interface MapIterable<K,V>public ImmutableBiMap<K,V> toImmutable()
BiMaptoImmutable in interface BiMap<K,V>toImmutable in interface MapIterable<K,V>toImmutable in interface MutableMapIterable<K,V>@Deprecated public MutableSet<Pair<V,Integer>> zipWithIndex()
OrderedIterable.zipWithIndex() instead.RichIterableRichIterable with its indices.zipWithIndex in interface BiMap<K,V>zipWithIndex in interface MutableBiMap<K,V>zipWithIndex in interface MutableMapIterable<K,V>zipWithIndex in interface RichIterable<K>RichIterable containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)public <VV> MutableBiMap<VV,V> groupByUniqueKey(Function<? super V,? extends VV> function)
RichIterablegroupByUniqueKey in interface BiMap<K,V>groupByUniqueKey in interface MutableBiMap<K,V>groupByUniqueKey in interface MutableMapIterable<K,V>groupByUniqueKey in interface RichIterable<K>groupByUniqueKey in class AbstractSynchronizedMapIterable<K,V>RichIterable.groupBy(Function)@Deprecated public <S> MutableSet<Pair<V,S>> zip(Iterable<S> that)
OrderedIterable.zip(Iterable) instead.RichIterableRichIterable formed from this RichIterable and another RichIterable by
combining corresponding elements in pairs. If one of the two RichIterables is longer than the other, its
remaining elements are ignored.zip in interface BiMap<K,V>zip in interface MutableBiMap<K,V>zip in interface MutableMapIterable<K,V>zip in interface RichIterable<K>S - the type of the second half of the returned pairsthat - The RichIterable providing the second half of each result pairRichIterable containing pairs consisting of corresponding elements of this
RichIterable and that. The length of the returned RichIterable is the minimum of the lengths of
this RichIterable and that.public MutableBiMap<K,V> withKeyValue(K key, V value)
MutableMapIterable
map = map.withKeyValue("new key", "new value");
In the case of FixedSizeMap, a new instance will be returned by withKeyValue, and any variables that
previously referenced the original map will need to be redirected to reference the new instance. In the case
of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap
will both return "this" after calling put on themselves.withKeyValue in interface MutableBiMap<K,V>withKeyValue in interface MutableMapIterable<K,V>Map.put(Object, Object)public MutableBiMap<K,V> withAllKeyValues(Iterable<? extends Pair<? extends K,? extends V>> keyValues)
MutableMapIterable
map = map.withAllKeyValues(FastList.newListWith(PairImpl.of("new key", "new value")));
In the case of FixedSizeMap, a new instance will be returned by withAllKeyValues, and any variables that
previously referenced the original map will need to be redirected to reference the new instance. In the case
of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap
will both return "this" after calling put on themselves.withAllKeyValues in interface MutableBiMap<K,V>withAllKeyValues in interface MutableMapIterable<K,V>Map.put(Object, Object)public MutableBiMap<K,V> withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
MutableMapIterablewithAllKeyValueArguments in interface MutableBiMap<K,V>withAllKeyValueArguments in interface MutableMapIterable<K,V>MutableMapIterable.withAllKeyValues(Iterable)public MutableBiMap<K,V> withoutKey(K key)
MutableMapIterable
map = map.withoutKey("key");
In the case of FixedSizeMap, a new instance will be returned by withoutKey, and any variables that previously
referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap
or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return
"this" after calling remove on themselves.withoutKey in interface MutableBiMap<K,V>withoutKey in interface MutableMapIterable<K,V>Map.remove(Object)public MutableBiMap<K,V> withoutAllKeys(Iterable<? extends K> keys)
MutableMapIterable
map = map.withoutAllKeys(FastList.newListWith("key1", "key2"));
In the case of FixedSizeMap, a new instance will be returned by withoutAllKeys, and any variables that previously
referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap
or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return
"this" after calling remove on themselves.withoutAllKeys in interface MutableBiMap<K,V>withoutAllKeys in interface MutableMapIterable<K,V>Map.remove(Object)Copyright © 2004–2017. All rights reserved.