Constructor and Description |
---|
Stats() |
Modifier and Type | Method and Description |
---|---|
static Object |
averageDeviation(Dataset a) |
static Dataset |
covariance(Dataset a)
See
covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof) with b = null, rowvar = true, bias = false and ddof = null. |
static Dataset |
covariance(Dataset a,
boolean rowvar,
boolean bias,
Integer ddof)
See
covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof) with b = null. |
static Dataset |
covariance(Dataset a,
Dataset b)
See
covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof) with b = null, rowvar = true, bias = false and ddof = null. |
static Dataset |
covariance(Dataset a,
Dataset b,
boolean rowvar,
boolean bias,
Integer ddof)
Calculate the covariance matrix (array) of a concatenated with b.
|
static Dataset |
cumulativeProduct(Dataset a,
boolean... ignoreInvalids) |
static Dataset |
cumulativeProduct(Dataset a,
int axis,
boolean... ignoreInvalids) |
static Dataset |
cumulativeSum(Dataset a,
boolean... ignoreInvalids) |
static Dataset |
cumulativeSum(Dataset a,
int axis,
boolean... ignoreInvalids) |
static Object |
iqr(Dataset a)
Interquartile range: Q3 - Q1
|
static Dataset |
iqr(Dataset a,
int axis)
Interquartile range: Q3 - Q1
|
static Object |
kurtosis(Dataset a,
boolean... ignoreInvalids) |
static Dataset |
kurtosis(Dataset a,
int axis,
boolean... ignoreInvalids) |
static Object |
median(Dataset a) |
static Dataset |
median(Dataset a,
int axis) |
static double[] |
outlierValues(Dataset a,
double lo,
double hi,
int length)
Calculate approximate outlier values.
|
static Object |
product(Dataset a,
boolean... ignoreInvalids) |
static Dataset |
product(Dataset a,
int axis,
boolean... ignoreInvalids) |
static double[] |
quantile(Dataset a,
double... values)
Calculate quantiles of dataset which is defined as the inverse of the cumulative distribution function (CDF)
|
static double |
quantile(Dataset a,
double q)
Calculate quantile of dataset which is defined as the inverse of the cumulative distribution function (CDF)
|
static Dataset[] |
quantile(Dataset a,
int axis,
double... values)
Calculate quantiles of dataset which is defined as the inverse of the cumulative distribution function (CDF)
|
static double |
residual(Dataset a,
Dataset b)
The residual is the sum of squared differences
|
static Object |
skewness(Dataset a,
boolean... ignoreInvalids) |
static Dataset |
skewness(Dataset a,
int axis,
boolean... ignoreInvalids) |
static Object |
sum(Dataset a,
boolean... ignoreInvalids) |
static Object |
typedProduct(Dataset a,
int dtype,
boolean... ignoreInvalids) |
static Dataset |
typedProduct(Dataset a,
int dtype,
int axis,
boolean... ignoreInvalids) |
static Object |
typedSum(Dataset a,
int dtype,
boolean... ignoreInvalids) |
static Dataset |
typedSum(Dataset a,
int dtype,
int axis,
boolean... ignoreInvalids) |
static double |
weightedResidual(Dataset a,
Dataset b,
Dataset w)
The residual is the sum of squared differences
|
public Stats()
public static double quantile(Dataset a, double q)
a
- q
- public static double[] quantile(Dataset a, double... values)
a
- values
- public static Dataset[] quantile(Dataset a, int axis, double... values)
a
- axis
- values
- public static Dataset median(Dataset a, int axis)
a
- datasetaxis
- public static Dataset iqr(Dataset a, int axis)
a
- axis
- public static Object skewness(Dataset a, boolean... ignoreInvalids)
a
- datasetignoreInvalids
- see IDataset.max(boolean...)
public static Object kurtosis(Dataset a, boolean... ignoreInvalids)
a
- datasetignoreInvalids
- see IDataset.max(boolean...)
public static Dataset skewness(Dataset a, int axis, boolean... ignoreInvalids)
a
- datasetaxis
- ignoreInvalids
- see Dataset.max(int, boolean...)
public static Dataset kurtosis(Dataset a, int axis, boolean... ignoreInvalids)
a
- datasetaxis
- ignoreInvalids
- see Dataset.max(int, boolean...)
public static Object sum(Dataset a, boolean... ignoreInvalids)
a
- datasetignoreInvalids
- see IDataset.max(boolean...)
public static Object typedSum(Dataset a, int dtype, boolean... ignoreInvalids)
a
- datasetdtype
- ignoreInvalids
- see IDataset.max(boolean...)
public static Dataset typedSum(Dataset a, int dtype, int axis, boolean... ignoreInvalids)
a
- datasetdtype
- axis
- ignoreInvalids
- see Dataset.max(int, boolean...)
public static Object product(Dataset a, boolean... ignoreInvalids)
a
- datasetignoreInvalids
- see IDataset.max(boolean...)
public static Dataset product(Dataset a, int axis, boolean... ignoreInvalids)
a
- datasetaxis
- ignoreInvalids
- see Dataset.max(int, boolean...)
public static Object typedProduct(Dataset a, int dtype, boolean... ignoreInvalids)
a
- datasetdtype
- ignoreInvalids
- see IDataset.max(boolean...)
public static Dataset typedProduct(Dataset a, int dtype, int axis, boolean... ignoreInvalids)
a
- datasetdtype
- axis
- ignoreInvalids
- see IDataset.max(boolean...)
public static Dataset cumulativeProduct(Dataset a, boolean... ignoreInvalids)
a
- datasetignoreInvalids
- see IDataset.max(boolean...)
public static Dataset cumulativeProduct(Dataset a, int axis, boolean... ignoreInvalids)
a
- datasetaxis
- ignoreInvalids
- see Dataset.max(int, boolean...)
public static Dataset cumulativeSum(Dataset a, boolean... ignoreInvalids)
a
- datasetignoreInvalids
- see IDataset.max(boolean...)
public static Dataset cumulativeSum(Dataset a, int axis, boolean... ignoreInvalids)
a
- datasetaxis
- ignoreInvalids
- see Dataset.max(int, boolean...)
public static Object averageDeviation(Dataset a)
a
- public static double residual(Dataset a, Dataset b)
a
- b
- public static double weightedResidual(Dataset a, Dataset b, Dataset w)
a
- b
- w
- public static double[] outlierValues(Dataset a, double lo, double hi, int length)
It approximates by limiting the number of items (given by length) used internally by data structures - the larger this is, the more accurate will those outlier values become. The actual thresholds used are returned in the array.
Also, the low and high values will be made distinct if possible by adjusting the thresholds
a
- lo
- percentage threshold for lower limithi
- percentage threshold for higher limitlength
- maximum number of items used internally, if negative, then unlimitedpublic static Dataset covariance(Dataset a)
covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof)
with b = null, rowvar = true, bias = false and ddof = null.a
- public static Dataset covariance(Dataset a, boolean rowvar, boolean bias, Integer ddof)
covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof)
with b = null.a
- public static Dataset covariance(Dataset a, Dataset b)
covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof)
with b = null, rowvar = true, bias = false and ddof = null.a
- public static Dataset covariance(Dataset a, Dataset b, boolean rowvar, boolean bias, Integer ddof)
a
- Array containing multiple variable and observations. Each row represents a variable, each column an observation.b
- An extra set of variables and observations. Must be of same type as a and have a compatible shape.rowvar
- When true (default), each row is a variable; when false each column is a variable.bias
- Default normalisation is (N - 1) - N is number of observations. If set true, normalisation is (N).ddof
- Default normalisation is (N - 1). If ddof is set, then normalisation is (N - ddof).Copyright © 2017. All rights reserved.