java.lang.Cloneable, java.lang.Iterable<K>, java.util.Map<K,V>, InternalIterable<K>, MapIterable<K,V>, MutableMap<K,V>, MutableMapIterable<K,V>, UnsortedMapIterable<K,V>, RichIterable<K>ConcurrentHashMap, ConcurrentHashMapUnsafe, ConcurrentMutableHashMap, MapAdapter, UnifiedMap, UnifiedMapWithHashingStrategypublic abstract class AbstractMutableMap<K,V> extends AbstractMutableMapIterable<K,V> implements MutableMap<K,V>
| Constructor | Description |
|---|---|
AbstractMutableMap() |
| Modifier and Type | Method | Description |
|---|---|---|
MutableMap<K,V> |
asSynchronized() |
Returns a synchronized wrapper backed by this map.
|
MutableMap<K,V> |
asUnmodifiable() |
Returns an unmodifiable view of this map.
|
abstract MutableMap<K,V> |
clone() |
|
<R> MutableBag<R> |
collect(Function<? super V,? extends R> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection.
|
MutableBooleanBag |
collectBoolean(BooleanFunction<? super V> booleanFunction) |
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
MutableByteBag |
collectByte(ByteFunction<? super V> byteFunction) |
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
MutableCharBag |
collectChar(CharFunction<? super V> charFunction) |
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
MutableDoubleBag |
collectDouble(DoubleFunction<? super V> doubleFunction) |
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
MutableFloatBag |
collectFloat(FloatFunction<? super V> floatFunction) |
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<R> MutableBag<R> |
collectIf(Predicate<? super V> predicate,
Function<? super V,? extends R> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection, but only for those elements which return true upon evaluation of the predicate.
|
MutableIntBag |
collectInt(IntFunction<? super V> intFunction) |
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
MutableLongBag |
collectLong(LongFunction<? super V> longFunction) |
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
MutableShortBag |
collectShort(ShortFunction<? super V> shortFunction) |
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<R> MutableMap<K,R> |
collectValues(Function2<? super K,? super V,? extends R> function) |
For each key and value of the map the function is evaluated.
|
<P,VV> MutableBag<VV> |
collectWith(Function2<? super V,? super P,? extends VV> function,
P parameter) |
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
<R> MutableBag<R> |
flatCollect(Function<? super V,? extends java.lang.Iterable<R>> function) |
flatCollect is a special case of RichIterable.collect(Function). |
MutableSetMultimap<V,K> |
flip() |
Given a map from Domain -> Range return a multimap from Range -> Domain.
|
<VV> MutableBagMultimap<VV,V> |
groupBy(Function<? super V,? extends VV> function) |
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<VV> MutableBagMultimap<VV,V> |
groupByEach(Function<? super V,? extends java.lang.Iterable<VV>> function) |
Similar to
RichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value. |
<VV> MutableMap<VV,V> |
groupByUniqueKey(Function<? super V,? extends VV> function) |
For each element of the iterable, the function is evaluated and he results of these evaluations are collected
into a new map, where the transformed value is the key.
|
abstract <K,V> MutableMap<K,V> |
newEmpty(int capacity) |
Creates a new instance of the same type, using the given capacity and the default growth parameters.
|
PartitionMutableBag<V> |
partition(Predicate<? super V> predicate) |
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableBag<V> |
partitionWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableBag<V> |
reject(Predicate<? super V> predicate) |
Returns all elements of the source collection that return false when evaluating of the predicate.
|
MutableMap<K,V> |
reject(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is false,
that key and value are returned in a new map.
|
<P> MutableBag<V> |
rejectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
MutableBag<V> |
select(Predicate<? super V> predicate) |
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableMap<K,V> |
select(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is true,
that key and value are returned in a new map.
|
<S> MutableBag<S> |
selectInstancesOf(java.lang.Class<S> clazz) |
Returns all elements of the source collection that are instances of the Class
clazz. |
<P> MutableBag<V> |
selectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2. |
MutableMap<K,V> |
tap(Procedure<? super V> procedure) |
Executes the Procedure for each value of the map and returns
this. |
ImmutableMap<K,V> |
toImmutable() |
Returns an immutable copy of this map.
|
MutableMap<K,V> |
withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValues) |
Convenience var-args version of withAllKeyValues
|
MutableMap<K,V> |
withAllKeyValues(java.lang.Iterable<? extends Pair<? extends K,? extends V>> keyValues) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableMap<K,V> |
withKeyValue(K key,
V value) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableMap<K,V> |
withoutAllKeys(java.lang.Iterable<? extends K> keys) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
MutableMap<K,V> |
withoutKey(K key) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
<S> MutableBag<Pair<V,S>> |
zip(java.lang.Iterable<S> that) |
Deprecated.
in 6.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<V,java.lang.Integer>> |
zipWithIndex() |
Deprecated.
in 6.0. Use
OrderedIterable.zipWithIndex() instead. |
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, asLazy, chunk, contains, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, forEachKey, forEachValue, forEachWith, forEachWithIndex, getFirst, getIfAbsent, getIfAbsentValue, getIfAbsentWith, getLast, getOnly, ifPresentApply, noneSatisfy, noneSatisfyWith, toArray, toArrayaggregateBy, aggregateInPlaceBy, collect, countBy, countByWith, detect, detectOptional, flipUniqueValues, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, iterator, keysView, keyValuesView, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWith, valuesViewappendString, appendString, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, containsAll, containsAllArguments, containsAllIterable, count, countWith, flatCollect, forEach, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, max, max, maxBy, min, min, minBy, reject, rejectWith, select, selectWith, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndexforEach, forEach, forEachWith, forEachWithIndexclear, compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, entry, entrySet, equals, forEach, get, getOrDefault, hashCode, isEmpty, keySet, merge, of, of, of, of, of, of, of, of, of, of, of, ofEntries, put, putAll, putIfAbsent, remove, remove, replace, replace, replaceAll, size, valuescontainsKey, containsValue, detect, detectOptional, equals, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentValue, getIfAbsentWith, hashCode, ifPresentApply, keysView, keyValuesView, parallelStream, spliterator, stream, toString, valuesViewaggregateBy, aggregateInPlaceBy, collect, collectKeysAndValues, flipUniqueValues, newEmptyadd, countBy, countByWith, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWithequals, getClass, hashCode, notify, notifyAll, wait, wait, waitallSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countBy, countByWith, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, flatCollect, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reduce, reduceInPlace, reduceInPlace, reject, rejectWith, select, selectWith, size, summarizeDouble, summarizeFloat, summarizeInt, summarizeLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, zip, zipWithIndexpublic abstract MutableMap<K,V> clone()
clone in interface MutableMap<K,V>clone in class java.lang.Objectpublic abstract <K,V> MutableMap<K,V> newEmpty(int capacity)
public MutableMap<K,V> asUnmodifiable()
MutableMapIterableCollections.unmodifiableMap(this) only with a return type that supports the full
iteration protocols available on MutableMapIterable. Methods which would
mutate the underlying map will throw UnsupportedOperationExceptions.asUnmodifiable in interface MutableMap<K,V>asUnmodifiable in interface MutableMapIterable<K,V>Collections.unmodifiableMap(Map)public ImmutableMap<K,V> toImmutable()
MutableMapIterabletoImmutable in interface MapIterable<K,V>toImmutable in interface MutableMapIterable<K,V>toImmutable in interface UnsortedMapIterable<K,V>public MutableMap<K,V> asSynchronized()
MutableMapIterableCollections.synchronizedMap(this) only with the more feature rich return type of
MutableMapIterable.
The preferred way of iterating over a synchronized map is to use the forEachKey(), forEachValue() and forEachKeyValue() methods which are properly synchronized internally.
MutableMap synchedMap = map.asSynchronized(); synchedMap.forEachKey(key -> ... ); synchedMap.forEachValue(value -> ... ); synchedMap.forEachKeyValue((key, value) -> ... );
If you want to iterate imperatively over the keySet(), values(), or entrySet(), you will need to protect the iteration by wrapping the code in a synchronized block on the map.
asSynchronized in interface MutableMap<K,V>asSynchronized in interface MutableMapIterable<K,V>Collections.synchronizedMap(Map)public MutableSetMultimap<V,K> flip()
MapIterableSince the keys in the input are unique, the values in the output are unique, so the return type should be a SetMultimap. However since SetMultimap and SortedSetMultimap don't inherit from one another, SetMultimap here does not allow SortedMapIterable to have a SortedSetMultimap return. Thus we compromise and call this Multimap, even though all implementations will be a SetMultimap or SortedSetMultimap.
flip in interface MapIterable<K,V>flip in interface MutableMap<K,V>flip in interface MutableMapIterable<K,V>flip in interface UnsortedMapIterable<K,V>public <R> MutableMap<K,R> collectValues(Function2<? super K,? super V,? extends R> function)
MapIterable
MapIterable<City, String> collected =
peopleByCity.collectValues((City city, Person person) -> person.getFirstName() + " " + person.getLastName());
collectValues in interface MapIterable<K,V>collectValues in interface MutableMap<K,V>collectValues in interface MutableMapIterable<K,V>collectValues in interface UnsortedMapIterable<K,V>public MutableMap<K,V> select(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> selected =
peopleByCity.select((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
select in interface MapIterable<K,V>select in interface MutableMap<K,V>select in interface MutableMapIterable<K,V>select in interface UnsortedMapIterable<K,V>public MutableMap<K,V> reject(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> rejected =
peopleByCity.reject((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
reject in interface MapIterable<K,V>reject in interface MutableMap<K,V>reject in interface MutableMapIterable<K,V>reject in interface UnsortedMapIterable<K,V>public <R> MutableBag<R> collect(Function<? super V,? extends R> function)
RichIterableExample using a Java 8 lambda expression:
RichIterable<String> names =
people.collect(person -> person.getFirstName() + " " + person.getLastName());
Example using an anonymous inner class:
RichIterable<String> names =
people.collect(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getFirstName() + " " + person.getLastName();
}
});
collect in interface MutableMap<K,V>collect in interface RichIterable<K>collect in interface UnsortedMapIterable<K,V>public MutableBooleanBag collectBoolean(BooleanFunction<? super V> booleanFunction)
RichIterableboolean iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses =
people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses =
people.collectBoolean(new BooleanFunction<Person>()
{
public boolean booleanValueOf(Person person)
{
return person.hasDrivingLicense();
}
});
collectBoolean in interface MutableMap<K,V>collectBoolean in interface RichIterable<K>collectBoolean in interface UnsortedMapIterable<K,V>public MutableByteBag collectByte(ByteFunction<? super V> byteFunction)
RichIterablebyte iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes =
people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes =
people.collectByte(new ByteFunction<Person>()
{
public byte byteValueOf(Person person)
{
return person.getCode();
}
});
collectByte in interface MutableMap<K,V>collectByte in interface RichIterable<K>collectByte in interface UnsortedMapIterable<K,V>public MutableCharBag collectChar(CharFunction<? super V> charFunction)
RichIterablechar iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars =
people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars =
people.collectChar(new CharFunction<Person>()
{
public char charValueOf(Person person)
{
return person.getMiddleInitial();
}
});
collectChar in interface MutableMap<K,V>collectChar in interface RichIterable<K>collectChar in interface UnsortedMapIterable<K,V>public MutableDoubleBag collectDouble(DoubleFunction<? super V> doubleFunction)
RichIterabledouble iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles =
people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles =
people.collectDouble(new DoubleFunction<Person>()
{
public double doubleValueOf(Person person)
{
return person.getMilesFromNorthPole();
}
});
collectDouble in interface MutableMap<K,V>collectDouble in interface RichIterable<K>collectDouble in interface UnsortedMapIterable<K,V>public MutableFloatBag collectFloat(FloatFunction<? super V> floatFunction)
RichIterablefloat iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats =
people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats =
people.collectFloat(new FloatFunction<Person>()
{
public float floatValueOf(Person person)
{
return person.getHeightInInches();
}
});
collectFloat in interface MutableMap<K,V>collectFloat in interface RichIterable<K>collectFloat in interface UnsortedMapIterable<K,V>public MutableIntBag collectInt(IntFunction<? super V> intFunction)
RichIterableint iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints =
people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints =
people.collectInt(new IntFunction<Person>()
{
public int intValueOf(Person person)
{
return person.getAge();
}
});
collectInt in interface MutableMap<K,V>collectInt in interface RichIterable<K>collectInt in interface UnsortedMapIterable<K,V>public MutableLongBag collectLong(LongFunction<? super V> longFunction)
RichIterablelong iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs =
people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs =
people.collectLong(new LongFunction<Person>()
{
public long longValueOf(Person person)
{
return person.getGuid();
}
});
collectLong in interface MutableMap<K,V>collectLong in interface RichIterable<K>collectLong in interface UnsortedMapIterable<K,V>public MutableShortBag collectShort(ShortFunction<? super V> shortFunction)
RichIterableshort iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts =
people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts =
people.collectShort(new ShortFunction<Person>()
{
public short shortValueOf(Person person)
{
return person.getNumberOfJunkMailItemsReceivedPerMonth();
}
});
collectShort in interface MutableMap<K,V>collectShort in interface RichIterable<K>collectShort in interface UnsortedMapIterable<K,V>public <P,VV> MutableBag<VV> collectWith(Function2<? super V,? super P,? extends VV> function, P parameter)
RichIterableRichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction =
new Function2<Integer, Integer, Integer>()
{
public Integer value(Integer each, Integer parameter)
{
return each + parameter;
}
};
RichIterable<Integer> integers =
Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith in interface MutableMap<K,V>collectWith in interface RichIterable<K>collectWith in interface UnsortedMapIterable<K,V>function - A Function2 to use as the collect transformation functionparameter - A parameter to pass in for evaluation of the second argument P in functionRichIterable that contains the transformed elements returned by Function2.value(Object, Object)RichIterable.collect(Function)public <R> MutableBag<R> collectIf(Predicate<? super V> predicate, Function<? super V,? extends R> function)
RichIterableExample using a Java 8 lambda and method reference:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(e -> e != null, Object::toString);
Example using Predicates factory:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString());
collectIf in interface MutableMap<K,V>collectIf in interface RichIterable<K>collectIf in interface UnsortedMapIterable<K,V>public <R> MutableBag<R> flatCollect(Function<? super V,? extends java.lang.Iterable<R>> function)
RichIterableflatCollect is a special case of RichIterable.collect(Function). With collect, when the Function returns
a collection, the result is a collection of collections. flatCollect outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person class, and each Person has a list of Address objects. Take the following Function:
Function<Person, List<Address>> addressFunction = Person::getAddresses; RichIterable<Person> people = ...;Using
collect returns a collection of collections of addresses.
RichIterable<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect returns a single flattened list of addresses.
RichIterable<Address> addresses = people.flatCollect(addressFunction);
flatCollect in interface MutableMap<K,V>flatCollect in interface RichIterable<K>flatCollect in interface UnsortedMapIterable<K,V>function - The Function to applyfunctionpublic MutableBag<V> select(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> selected =
people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.select(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getCity().equals("London");
}
});select in interface MutableMap<K,V>select in interface MutableMapIterable<K,V>select in interface RichIterable<K>select in interface UnsortedMapIterable<K,V>public MutableMap<K,V> tap(Procedure<? super V> procedure)
MapIterablethis.
return peopleByCity.tap(person -> LOGGER.info(person.getName()));
tap in interface MapIterable<K,V>tap in interface MutableMap<K,V>tap in interface MutableMapIterable<K,V>tap in interface RichIterable<K>tap in interface UnsortedMapIterable<K,V>InternalIterable.forEach(Procedure)public <P> MutableBag<V> selectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableRichIterable.select(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected =
people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected =
people.selectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() >= age;
}
}, Integer.valueOf(18));
selectWith in interface MutableMap<K,V>selectWith in interface MutableMapIterable<K,V>selectWith in interface RichIterable<K>selectWith in interface UnsortedMapIterable<K,V>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public MutableBag<V> reject(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected =
people.reject(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.person.getLastName().equals("Smith");
}
});
reject in interface MutableMap<K,V>reject in interface MutableMapIterable<K,V>reject in interface RichIterable<K>reject in interface UnsortedMapIterable<K,V>predicate - a Predicate to use as the reject criteriaPredicate.accept(Object) method to evaluate to falsepublic <P> MutableBag<V> rejectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableRichIterable.reject(Predicate), except with an evaluation parameter for the second generic argument in Predicate2.
E.g. return a Collection of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected =
people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected =
people.rejectWith(new Predicate2<Person, Integer>()
{
public boolean accept(Person person, Integer age)
{
return person.getAge() < age;
}
}, Integer.valueOf(18));
rejectWith in interface MutableMap<K,V>rejectWith in interface MutableMapIterable<K,V>rejectWith in interface RichIterable<K>rejectWith in interface UnsortedMapIterable<K,V>predicate - a Predicate2 to use as the select criteriaparameter - a parameter to pass in for evaluation of the second argument P in predicateRichIterable.select(Predicate)public PartitionMutableBag<V> partition(Predicate<? super V> predicate)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers =
people.partition(new Predicate<Person>()
{
public boolean accept(Person person)
{
return person.getAddress().getState().getName().equals("New York");
}
});
partition in interface MutableMap<K,V>partition in interface MutableMapIterable<K,V>partition in interface RichIterable<K>partition in interface UnsortedMapIterable<K,V>public <P> PartitionMutableBag<V> partitionWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterableExample using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers =
people.partitionWith(new Predicate2<Person, String>()
{
public boolean accept(Person person, String state)
{
return person.getAddress().getState().getName().equals(state);
}
}, "New York");
partitionWith in interface MutableMap<K,V>partitionWith in interface RichIterable<K>partitionWith in interface UnsortedMapIterable<K,V>public <S> MutableBag<S> selectInstancesOf(java.lang.Class<S> clazz)
RichIterableclazz.
RichIterable<Integer> integers =
List.mutable.with(new Integer(0), new Long(0L), new Double(0.0)).selectInstancesOf(Integer.class);
selectInstancesOf in interface MutableMap<K,V>selectInstancesOf in interface MutableMapIterable<K,V>selectInstancesOf in interface RichIterable<K>selectInstancesOf in interface UnsortedMapIterable<K,V>@Deprecated public <S> MutableBag<Pair<V,S>> zip(java.lang.Iterable<S> that)
OrderedIterable.zip(Iterable) instead.RichIterableRichIterable formed from this RichIterable and another RichIterable by
combining corresponding elements in pairs. If one of the two RichIterables is longer than the other, its
remaining elements are ignored.zip in interface MutableMap<K,V>zip in interface MutableMapIterable<K,V>zip in interface RichIterable<K>zip in interface UnsortedMapIterable<K,V>S - the type of the second half of the returned pairsthat - The RichIterable providing the second half of each result pairRichIterable containing pairs consisting of corresponding elements of this
RichIterable and that. The length of the returned RichIterable is the minimum of the lengths of
this RichIterable and that.@Deprecated public MutableSet<Pair<V,java.lang.Integer>> zipWithIndex()
OrderedIterable.zipWithIndex() instead.RichIterableRichIterable with its indices.zipWithIndex in interface MutableMap<K,V>zipWithIndex in interface MutableMapIterable<K,V>zipWithIndex in interface RichIterable<K>zipWithIndex in interface UnsortedMapIterable<K,V>RichIterable containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)public MutableMap<K,V> withKeyValue(K key, V value)
MutableMapIterable
map = map.withKeyValue("new key", "new value");
In the case of FixedSizeMap, a new instance will be returned by withKeyValue, and any variables that
previously referenced the original map will need to be redirected to reference the new instance. In the case
of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap
will both return "this" after calling put on themselves.withKeyValue in interface MutableMap<K,V>withKeyValue in interface MutableMapIterable<K,V>Map.put(Object, Object)public MutableMap<K,V> withAllKeyValues(java.lang.Iterable<? extends Pair<? extends K,? extends V>> keyValues)
MutableMapIterable
map = map.withAllKeyValues(FastList.newListWith(PairImpl.of("new key", "new value")));
In the case of FixedSizeMap, a new instance will be returned by withAllKeyValues, and any variables that
previously referenced the original map will need to be redirected to reference the new instance. In the case
of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap
will both return "this" after calling put on themselves.withAllKeyValues in interface MutableMap<K,V>withAllKeyValues in interface MutableMapIterable<K,V>Map.put(Object, Object)public MutableMap<K,V> withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValues)
MutableMapIterablewithAllKeyValueArguments in interface MutableMap<K,V>withAllKeyValueArguments in interface MutableMapIterable<K,V>MutableMapIterable.withAllKeyValues(Iterable)public MutableMap<K,V> withoutKey(K key)
MutableMapIterable
map = map.withoutKey("key");
In the case of FixedSizeMap, a new instance will be returned by withoutKey, and any variables that previously
referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap
or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return
"this" after calling remove on themselves.withoutKey in interface MutableMap<K,V>withoutKey in interface MutableMapIterable<K,V>Map.remove(Object)public MutableMap<K,V> withoutAllKeys(java.lang.Iterable<? extends K> keys)
MutableMapIterable
map = map.withoutAllKeys(FastList.newListWith("key1", "key2"));
In the case of FixedSizeMap, a new instance will be returned by withoutAllKeys, and any variables that previously
referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap
or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return
"this" after calling remove on themselves.withoutAllKeys in interface MutableMap<K,V>withoutAllKeys in interface MutableMapIterable<K,V>Map.remove(Object)public <VV> MutableBagMultimap<VV,V> groupBy(Function<? super V,? extends VV> function)
RichIterableExample using a Java 8 method reference:
Multimap<String, Person> peopleByLastName =
people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName =
people.groupBy(new Function<Person, String>()
{
public String valueOf(Person person)
{
return person.getLastName();
}
});
groupBy in interface MutableMap<K,V>groupBy in interface MutableMapIterable<K,V>groupBy in interface RichIterable<K>groupBy in interface UnsortedMapIterable<K,V>public <VV> MutableBagMultimap<VV,V> groupByEach(Function<? super V,? extends java.lang.Iterable<VV>> function)
RichIterableRichIterable.groupBy(Function), except the result of evaluating function will return a collection of keys
for each value.groupByEach in interface MutableMap<K,V>groupByEach in interface MutableMapIterable<K,V>groupByEach in interface RichIterable<K>groupByEach in interface UnsortedMapIterable<K,V>public <VV> MutableMap<VV,V> groupByUniqueKey(Function<? super V,? extends VV> function)
RichIterablegroupByUniqueKey in interface MutableMap<K,V>groupByUniqueKey in interface MutableMapIterable<K,V>groupByUniqueKey in interface RichIterable<K>groupByUniqueKey in interface UnsortedMapIterable<K,V>groupByUniqueKey in class AbstractMutableMapIterable<K,V>RichIterable.groupBy(Function)Copyright © 2004–2017. All rights reserved.