java.io.Serializable
, java.lang.Cloneable
, java.lang.Iterable<K>
, java.util.Map<K,V>
, InternalIterable<K>
, MapIterable<K,V>
, MutableMap<K,V>
, MutableMapIterable<K,V>
, UnsortedMapIterable<K,V>
, RichIterable<K>
public class SynchronizedMutableMap<K,V> extends AbstractSynchronizedMapIterable<K,V> implements MutableMap<K,V>, java.io.Serializable
MutableMap
. It is imperative that the user manually synchronize on the collection when iterating over it using the
standard JDK iterator or JDK 5 for loop, as per Collections.synchronizedCollection(Collection)
.MutableMap.asSynchronized()
,
Serialized FormConstructor | Description |
---|---|
SynchronizedMutableMap(MutableMap<K,V> newMap) |
|
SynchronizedMutableMap(MutableMap<K,V> newMap,
java.lang.Object newLock) |
Modifier and Type | Method | Description |
---|---|---|
MutableMap<K,V> |
asSynchronized() |
Returns a synchronized wrapper backed by this map.
|
MutableMap<K,V> |
asUnmodifiable() |
Returns an unmodifiable view of this map.
|
MutableMap<K,V> |
clone() |
|
<A> MutableBag<A> |
collect(Function<? super V,? extends A> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection.
|
<K2,V2> MutableMap<K2,V2> |
collect(Function2<? super K,? super V,Pair<K2,V2>> pairFunction) |
For each key and value of the map the function is evaluated.
|
MutableBooleanBag |
collectBoolean(BooleanFunction<? super V> booleanFunction) |
Returns a new primitive
boolean iterable with the results of applying the specified function on each element
of the source collection. |
MutableByteBag |
collectByte(ByteFunction<? super V> byteFunction) |
Returns a new primitive
byte iterable with the results of applying the specified function on each element
of the source collection. |
MutableCharBag |
collectChar(CharFunction<? super V> charFunction) |
Returns a new primitive
char iterable with the results of applying the specified function on each element
of the source collection. |
MutableDoubleBag |
collectDouble(DoubleFunction<? super V> doubleFunction) |
Returns a new primitive
double iterable with the results of applying the specified function on each element
of the source collection. |
MutableFloatBag |
collectFloat(FloatFunction<? super V> floatFunction) |
Returns a new primitive
float iterable with the results of applying the specified function on each element
of the source collection. |
<A> MutableBag<A> |
collectIf(Predicate<? super V> predicate,
Function<? super V,? extends A> function) |
Returns a new collection with the results of applying the specified function on each element of the source
collection, but only for those elements which return true upon evaluation of the predicate.
|
MutableIntBag |
collectInt(IntFunction<? super V> intFunction) |
Returns a new primitive
int iterable with the results of applying the specified function on each element
of the source collection. |
<E> MutableMap<K,V> |
collectKeysAndValues(java.lang.Iterable<E> iterable,
Function<? super E,? extends K> keyFunction,
Function<? super E,? extends V> function) |
Adds all the entries derived from
iterable to this . |
MutableLongBag |
collectLong(LongFunction<? super V> longFunction) |
Returns a new primitive
long iterable with the results of applying the specified function on each element
of the source collection. |
MutableShortBag |
collectShort(ShortFunction<? super V> shortFunction) |
Returns a new primitive
short iterable with the results of applying the specified function on each element
of the source collection. |
<R> MutableMap<K,R> |
collectValues(Function2<? super K,? super V,? extends R> function) |
For each key and value of the map the function is evaluated.
|
<P,A> MutableBag<A> |
collectWith(Function2<? super V,? super P,? extends A> function,
P parameter) |
Same as
RichIterable.collect(Function) with a Function2 and specified parameter which is passed to the block. |
java.util.Set<java.util.Map.Entry<K,V>> |
entrySet() |
|
<A> MutableBag<A> |
flatCollect(Function<? super V,? extends java.lang.Iterable<A>> function) |
flatCollect is a special case of RichIterable.collect(Function) . |
MutableSetMultimap<V,K> |
flip() |
Given a map from Domain -> Range return a multimap from Range -> Domain.
|
MutableMap<V,K> |
flipUniqueValues() |
Return the MapIterable that is obtained by flipping the direction of this map and making the associations
from value to key.
|
<KK> MutableBagMultimap<KK,V> |
groupBy(Function<? super V,? extends KK> function) |
For each element of the iterable, the function is evaluated and the results of these evaluations are collected
into a new multimap, where the transformed value is the key and the original values are added to the same (or similar)
species of collection as the source iterable.
|
<KK> MutableBagMultimap<KK,V> |
groupByEach(Function<? super V,? extends java.lang.Iterable<KK>> function) |
Similar to
RichIterable.groupBy(Function) , except the result of evaluating function will return a collection of keys
for each value. |
<VV> MutableMap<VV,V> |
groupByUniqueKey(Function<? super V,? extends VV> function) |
For each element of the iterable, the function is evaluated and he results of these evaluations are collected
into a new map, where the transformed value is the key.
|
java.util.Set<K> |
keySet() |
|
RichIterable<K> |
keysView() |
Returns an unmodifiable lazy iterable wrapped around the keySet for the map.
|
MutableMap<K,V> |
newEmpty() |
Creates a new instance of the same type, using the default capacity and growth parameters.
|
static <K,V,M extends java.util.Map<K,V>> |
of(M map) |
This method will take a MutableMap and wrap it directly in a SynchronizedMutableMap.
|
static <K,V,M extends java.util.Map<K,V>> |
of(M map,
java.lang.Object lock) |
This method will take a MutableMap and wrap it directly in a SynchronizedMutableMap.
|
PartitionMutableBag<V> |
partition(Predicate<? super V> predicate) |
Filters a collection into a PartitionedIterable based on the evaluation of the predicate.
|
<P> PartitionMutableBag<V> |
partitionWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Filters a collection into a PartitionIterable based on the evaluation of the predicate.
|
MutableBag<V> |
reject(Predicate<? super V> predicate) |
Returns all elements of the source collection that return false when evaluating of the predicate.
|
MutableMap<K,V> |
reject(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is false,
that key and value are returned in a new map.
|
<P> MutableBag<V> |
rejectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.reject(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
MutableBag<V> |
select(Predicate<? super V> predicate) |
Returns all elements of the source collection that return true when evaluating the predicate.
|
MutableMap<K,V> |
select(Predicate2<? super K,? super V> predicate) |
For each key and value of the map the predicate is evaluated, if the result of the evaluation is true,
that key and value are returned in a new map.
|
<S> MutableBag<S> |
selectInstancesOf(java.lang.Class<S> clazz) |
Returns all elements of the source collection that are instances of the Class
clazz . |
<P> MutableBag<V> |
selectWith(Predicate2<? super V,? super P> predicate,
P parameter) |
Similar to
RichIterable.select(Predicate) , except with an evaluation parameter for the second generic argument in Predicate2 . |
MutableMap<K,V> |
tap(Procedure<? super V> procedure) |
Executes the Procedure for each element in the iterable and returns
this . |
ImmutableMap<K,V> |
toImmutable() |
Returns an immutable copy of this map.
|
java.util.Collection<V> |
values() |
|
RichIterable<V> |
valuesView() |
Returns an unmodifiable lazy iterable wrapped around the values for the map.
|
MutableMap<K,V> |
withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs) |
Convenience var-args version of withAllKeyValues
|
MutableMap<K,V> |
withAllKeyValues(java.lang.Iterable<? extends Pair<? extends K,? extends V>> keyValues) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableMap<K,V> |
withKeyValue(K key,
V value) |
This method allows mutable, fixed size, and immutable maps the ability to add elements to their existing
elements.
|
MutableMap<K,V> |
withoutAllKeys(java.lang.Iterable<? extends K> keys) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
MutableMap<K,V> |
withoutKey(K key) |
This method allows mutable, fixed size, and immutable maps the ability to remove elements from their existing
elements.
|
<S> MutableBag<Pair<V,S>> |
zip(java.lang.Iterable<S> that) |
Deprecated.
in 6.0. Use
OrderedIterable.zip(Iterable) instead. |
MutableSet<Pair<V,java.lang.Integer>> |
zipWithIndex() |
Deprecated.
in 6.0. Use
OrderedIterable.zipWithIndex() instead. |
add, aggregateBy, aggregateInPlaceBy, clear, containsKey, containsValue, countBy, countByWith, detect, detectOptional, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, getIfAbsentValue, getIfAbsentWith, ifPresentApply, keyValuesView, put, putAll, remove, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWith
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countBy, countByWith, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, equals, flatCollect, forEach, forEachWith, forEachWithIndex, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, hashCode, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, iterator, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reject, rejectWith, select, selectWith, size, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, toString, zip, zipWithIndex
forEach, forEach, forEachWith, forEachWithIndex
clear, compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, entry, equals, forEach, get, getOrDefault, hashCode, isEmpty, merge, of, of, of, of, of, of, of, of, of, of, ofEntries, put, putAll, putIfAbsent, remove, remove, replace, replace, replaceAll, size
containsKey, containsValue, detect, detectOptional, equals, forEachKey, forEachKeyValue, forEachValue, get, getIfAbsent, getIfAbsentValue, getIfAbsentWith, hashCode, ifPresentApply, keyValuesView, parallelStream, spliterator, stream, toString
aggregateBy, aggregateInPlaceBy
add, countBy, countByWith, getIfAbsentPut, getIfAbsentPut, getIfAbsentPutWith, getIfAbsentPutWithKey, removeKey, sumByDouble, sumByFloat, sumByInt, sumByLong, updateValue, updateValueWith
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
allSatisfy, allSatisfyWith, anySatisfy, anySatisfyWith, appendString, appendString, appendString, asLazy, chunk, collect, collectBoolean, collectByte, collectChar, collectDouble, collectFloat, collectIf, collectInt, collectLong, collectShort, collectWith, contains, containsAll, containsAllArguments, containsAllIterable, count, countBy, countByWith, countWith, detect, detectIfNone, detectOptional, detectWith, detectWithIfNone, detectWithOptional, each, flatCollect, getFirst, getLast, getOnly, groupBy, groupByEach, groupByUniqueKey, injectInto, injectInto, injectInto, injectInto, injectInto, into, isEmpty, makeString, makeString, makeString, max, max, maxBy, maxByOptional, maxOptional, maxOptional, min, min, minBy, minByOptional, minOptional, minOptional, noneSatisfy, noneSatisfyWith, notEmpty, reduce, reduceInPlace, reduceInPlace, reject, rejectWith, select, selectWith, size, summarizeDouble, summarizeFloat, summarizeInt, summarizeLong, sumOfDouble, sumOfFloat, sumOfInt, sumOfLong, toArray, toArray, toBag, toList, toMap, toSet, toSortedBag, toSortedBag, toSortedBagBy, toSortedList, toSortedList, toSortedListBy, toSortedMap, toSortedMap, toSortedSet, toSortedSet, toSortedSetBy, zip, zipWithIndex
public SynchronizedMutableMap(MutableMap<K,V> newMap)
public SynchronizedMutableMap(MutableMap<K,V> newMap, java.lang.Object newLock)
public static <K,V,M extends java.util.Map<K,V>> SynchronizedMutableMap<K,V> of(M map)
public static <K,V,M extends java.util.Map<K,V>> SynchronizedMutableMap<K,V> of(M map, java.lang.Object lock)
public MutableMap<K,V> withKeyValue(K key, V value)
MutableMapIterable
map = map.withKeyValue("new key", "new value");In the case of FixedSizeMap, a new instance will be returned by withKeyValue, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling put on themselves.
withKeyValue
in interface MutableMap<K,V>
withKeyValue
in interface MutableMapIterable<K,V>
Map.put(Object, Object)
public MutableMap<K,V> withAllKeyValueArguments(Pair<? extends K,? extends V>... keyValuePairs)
MutableMapIterable
withAllKeyValueArguments
in interface MutableMap<K,V>
withAllKeyValueArguments
in interface MutableMapIterable<K,V>
MutableMapIterable.withAllKeyValues(Iterable)
public MutableMap<K,V> withAllKeyValues(java.lang.Iterable<? extends Pair<? extends K,? extends V>> keyValues)
MutableMapIterable
map = map.withAllKeyValues(FastList.newListWith(PairImpl.of("new key", "new value")));In the case of FixedSizeMap, a new instance will be returned by withAllKeyValues, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling put on themselves.
withAllKeyValues
in interface MutableMap<K,V>
withAllKeyValues
in interface MutableMapIterable<K,V>
Map.put(Object, Object)
public MutableMap<K,V> withoutKey(K key)
MutableMapIterable
map = map.withoutKey("key");In the case of FixedSizeMap, a new instance will be returned by withoutKey, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling remove on themselves.
withoutKey
in interface MutableMap<K,V>
withoutKey
in interface MutableMapIterable<K,V>
Map.remove(Object)
public MutableMap<K,V> withoutAllKeys(java.lang.Iterable<? extends K> keys)
MutableMapIterable
map = map.withoutAllKeys(FastList.newListWith("key1", "key2"));In the case of FixedSizeMap, a new instance will be returned by withoutAllKeys, and any variables that previously referenced the original map will need to be redirected to reference the new instance. In the case of a FastMap or UnifiedMap, you will be replacing the reference to map with map, since FastMap and UnifiedMap will both return "this" after calling remove on themselves.
withoutAllKeys
in interface MutableMap<K,V>
withoutAllKeys
in interface MutableMapIterable<K,V>
Map.remove(Object)
public MutableMap<K,V> newEmpty()
MutableMapIterable
newEmpty
in interface MutableMap<K,V>
newEmpty
in interface MutableMapIterable<K,V>
public MutableMap<K,V> clone()
clone
in interface MutableMap<K,V>
clone
in class java.lang.Object
public <E> MutableMap<K,V> collectKeysAndValues(java.lang.Iterable<E> iterable, Function<? super E,? extends K> keyFunction, Function<? super E,? extends V> function)
MutableMap
iterable
to this
. The key and value for each entry
is determined by applying the keyFunction
and valueFunction
to each item in
collection
. Any entry in map
that has the same key as an entry in this
will have its value replaced by that in map
.collectKeysAndValues
in interface MutableMap<K,V>
public MutableMap<K,V> select(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> selected = peopleByCity.select((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
select
in interface MapIterable<K,V>
select
in interface MutableMap<K,V>
select
in interface MutableMapIterable<K,V>
select
in interface UnsortedMapIterable<K,V>
public MutableMap<K,V> reject(Predicate2<? super K,? super V> predicate)
MapIterable
MapIterable<City, Person> rejected = peopleByCity.reject((city, person) -> city.getName().equals("Anytown") && person.getLastName().equals("Smith"));
reject
in interface MapIterable<K,V>
reject
in interface MutableMap<K,V>
reject
in interface MutableMapIterable<K,V>
reject
in interface UnsortedMapIterable<K,V>
public <K2,V2> MutableMap<K2,V2> collect(Function2<? super K,? super V,Pair<K2,V2>> pairFunction)
MapIterable
MapIterable<String, String> collected = peopleByCity.collect((City city, Person person) -> Pair.of(city.getCountry(), person.getAddress().getCity()));
collect
in interface MapIterable<K,V>
collect
in interface MutableMap<K,V>
collect
in interface MutableMapIterable<K,V>
collect
in interface UnsortedMapIterable<K,V>
public <R> MutableMap<K,R> collectValues(Function2<? super K,? super V,? extends R> function)
MapIterable
MapIterable<City, String> collected = peopleByCity.collectValues((City city, Person person) -> person.getFirstName() + " " + person.getLastName());
collectValues
in interface MapIterable<K,V>
collectValues
in interface MutableMap<K,V>
collectValues
in interface MutableMapIterable<K,V>
collectValues
in interface UnsortedMapIterable<K,V>
public MutableMap<K,V> tap(Procedure<? super V> procedure)
RichIterable
this
.
Example using a Java 8 lambda expression:
RichIterable<Person> tapped = people.tap(person -> LOGGER.info(person.getName()));
Example using an anonymous inner class:
RichIterable<Person> tapped = people.tap(new Procedure<Person>() { public void value(Person person) { LOGGER.info(person.getName()); } });
tap
in interface MapIterable<K,V>
tap
in interface MutableMap<K,V>
tap
in interface MutableMapIterable<K,V>
tap
in interface RichIterable<K>
tap
in interface UnsortedMapIterable<K,V>
tap
in class AbstractSynchronizedMapIterable<K,V>
RichIterable.each(Procedure)
,
InternalIterable.forEach(Procedure)
public MutableBag<V> select(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.select(person -> person.getAddress().getCity().equals("London"));
Example using an anonymous inner class:
RichIterable<Person> selected = people.select(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getCity().equals("London"); } });
select
in interface MutableMap<K,V>
select
in interface MutableMapIterable<K,V>
select
in interface RichIterable<K>
select
in interface UnsortedMapIterable<K,V>
select
in class AbstractSynchronizedMapIterable<K,V>
public <P> MutableBag<V> selectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
RichIterable.select(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> selected = people.selectWith((Person person, Integer age) -> person.getAge() >= age, Integer.valueOf(18));
Example using an anonymous inner class:
RichIterable<Person> selected = people.selectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() >= age; } }, Integer.valueOf(18));
selectWith
in interface MutableMap<K,V>
selectWith
in interface MutableMapIterable<K,V>
selectWith
in interface RichIterable<K>
selectWith
in interface UnsortedMapIterable<K,V>
selectWith
in class AbstractSynchronizedMapIterable<K,V>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public MutableBag<V> reject(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.reject(person -> person.person.getLastName().equals("Smith"));
Example using an anonymous inner class:
RichIterable<Person> rejected = people.reject(new Predicate<Person>() { public boolean accept(Person person) { return person.person.getLastName().equals("Smith"); } });
reject
in interface MutableMap<K,V>
reject
in interface MutableMapIterable<K,V>
reject
in interface RichIterable<K>
reject
in interface UnsortedMapIterable<K,V>
reject
in class AbstractSynchronizedMapIterable<K,V>
predicate
- a Predicate
to use as the reject criteriaPredicate.accept(Object)
method to evaluate to falsepublic <P> MutableBag<V> rejectWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
RichIterable.reject(Predicate)
, except with an evaluation parameter for the second generic argument in Predicate2
.
E.g. return a Collection
of Person elements where the person has an age greater than or equal to 18 years
Example using a Java 8 lambda expression:
RichIterable<Person> rejected = people.rejectWith((Person person, Integer age) -> person.getAge() < age, Integer.valueOf(18));
Example using an anonymous inner class:
MutableList<Person> rejected = people.rejectWith(new Predicate2<Person, Integer>() { public boolean accept(Person person, Integer age) { return person.getAge() < age; } }, Integer.valueOf(18));
rejectWith
in interface MutableMap<K,V>
rejectWith
in interface MutableMapIterable<K,V>
rejectWith
in interface RichIterable<K>
rejectWith
in interface UnsortedMapIterable<K,V>
rejectWith
in class AbstractSynchronizedMapIterable<K,V>
predicate
- a Predicate2
to use as the select criteriaparameter
- a parameter to pass in for evaluation of the second argument P
in predicate
RichIterable.select(Predicate)
public PartitionMutableBag<V> partition(Predicate<? super V> predicate)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(person -> person.getAddress().getState().getName().equals("New York"));
Example using an anonymous inner class:
PartitionIterable<Person> newYorkersAndNonNewYorkers = people.partition(new Predicate<Person>() { public boolean accept(Person person) { return person.getAddress().getState().getName().equals("New York"); } });
partition
in interface MutableMap<K,V>
partition
in interface MutableMapIterable<K,V>
partition
in interface RichIterable<K>
partition
in interface UnsortedMapIterable<K,V>
partition
in class AbstractSynchronizedMapIterable<K,V>
@Deprecated public MutableSet<Pair<V,java.lang.Integer>> zipWithIndex()
OrderedIterable.zipWithIndex()
instead.RichIterable
RichIterable
with its indices.zipWithIndex
in interface MutableMap<K,V>
zipWithIndex
in interface MutableMapIterable<K,V>
zipWithIndex
in interface RichIterable<K>
zipWithIndex
in interface UnsortedMapIterable<K,V>
zipWithIndex
in class AbstractSynchronizedMapIterable<K,V>
RichIterable
containing pairs consisting of all elements of this RichIterable
paired with their index. Indices start at 0.RichIterable.zip(Iterable)
public <P> PartitionMutableBag<V> partitionWith(Predicate2<? super V,? super P> predicate, P parameter)
RichIterable
Example using a Java 8 lambda expression:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith((Person person, String state) -> person.getAddress().getState().getName().equals(state), "New York");
Example using an anonymous inner class:
PartitionIterable<Person>> newYorkersAndNonNewYorkers = people.partitionWith(new Predicate2<Person, String>() { public boolean accept(Person person, String state) { return person.getAddress().getState().getName().equals(state); } }, "New York");
partitionWith
in interface MutableMap<K,V>
partitionWith
in interface RichIterable<K>
partitionWith
in interface UnsortedMapIterable<K,V>
partitionWith
in class AbstractSynchronizedRichIterable<V>
public <S> MutableBag<S> selectInstancesOf(java.lang.Class<S> clazz)
RichIterable
clazz
.
RichIterable<Integer> integers = List.mutable.with(new Integer(0), new Long(0L), new Double(0.0)).selectInstancesOf(Integer.class);
selectInstancesOf
in interface MutableMap<K,V>
selectInstancesOf
in interface MutableMapIterable<K,V>
selectInstancesOf
in interface RichIterable<K>
selectInstancesOf
in interface UnsortedMapIterable<K,V>
selectInstancesOf
in class AbstractSynchronizedMapIterable<K,V>
public <A> MutableBag<A> collect(Function<? super V,? extends A> function)
RichIterable
Example using a Java 8 lambda expression:
RichIterable<String> names = people.collect(person -> person.getFirstName() + " " + person.getLastName());
Example using an anonymous inner class:
RichIterable<String> names = people.collect(new Function<Person, String>() { public String valueOf(Person person) { return person.getFirstName() + " " + person.getLastName(); } });
collect
in interface MutableMap<K,V>
collect
in interface RichIterable<K>
collect
in interface UnsortedMapIterable<K,V>
collect
in class AbstractSynchronizedRichIterable<V>
public MutableBooleanBag collectBoolean(BooleanFunction<? super V> booleanFunction)
RichIterable
boolean
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
BooleanIterable licenses = people.collectBoolean(person -> person.hasDrivingLicense());
Example using an anonymous inner class:
BooleanIterable licenses = people.collectBoolean(new BooleanFunction<Person>() { public boolean booleanValueOf(Person person) { return person.hasDrivingLicense(); } });
collectBoolean
in interface MutableMap<K,V>
collectBoolean
in interface RichIterable<K>
collectBoolean
in interface UnsortedMapIterable<K,V>
collectBoolean
in class AbstractSynchronizedRichIterable<V>
public MutableByteBag collectByte(ByteFunction<? super V> byteFunction)
RichIterable
byte
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ByteIterable bytes = people.collectByte(person -> person.getCode());
Example using an anonymous inner class:
ByteIterable bytes = people.collectByte(new ByteFunction<Person>() { public byte byteValueOf(Person person) { return person.getCode(); } });
collectByte
in interface MutableMap<K,V>
collectByte
in interface RichIterable<K>
collectByte
in interface UnsortedMapIterable<K,V>
collectByte
in class AbstractSynchronizedRichIterable<V>
public MutableCharBag collectChar(CharFunction<? super V> charFunction)
RichIterable
char
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
CharIterable chars = people.collectChar(person -> person.getMiddleInitial());
Example using an anonymous inner class:
CharIterable chars = people.collectChar(new CharFunction<Person>() { public char charValueOf(Person person) { return person.getMiddleInitial(); } });
collectChar
in interface MutableMap<K,V>
collectChar
in interface RichIterable<K>
collectChar
in interface UnsortedMapIterable<K,V>
collectChar
in class AbstractSynchronizedRichIterable<V>
public MutableDoubleBag collectDouble(DoubleFunction<? super V> doubleFunction)
RichIterable
double
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
DoubleIterable doubles = people.collectDouble(person -> person.getMilesFromNorthPole());
Example using an anonymous inner class:
DoubleIterable doubles = people.collectDouble(new DoubleFunction<Person>() { public double doubleValueOf(Person person) { return person.getMilesFromNorthPole(); } });
collectDouble
in interface MutableMap<K,V>
collectDouble
in interface RichIterable<K>
collectDouble
in interface UnsortedMapIterable<K,V>
collectDouble
in class AbstractSynchronizedRichIterable<V>
public MutableFloatBag collectFloat(FloatFunction<? super V> floatFunction)
RichIterable
float
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
FloatIterable floats = people.collectFloat(person -> person.getHeightInInches());
Example using an anonymous inner class:
FloatIterable floats = people.collectFloat(new FloatFunction<Person>() { public float floatValueOf(Person person) { return person.getHeightInInches(); } });
collectFloat
in interface MutableMap<K,V>
collectFloat
in interface RichIterable<K>
collectFloat
in interface UnsortedMapIterable<K,V>
collectFloat
in class AbstractSynchronizedRichIterable<V>
public MutableIntBag collectInt(IntFunction<? super V> intFunction)
RichIterable
int
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
IntIterable ints = people.collectInt(person -> person.getAge());
Example using an anonymous inner class:
IntIterable ints = people.collectInt(new IntFunction<Person>() { public int intValueOf(Person person) { return person.getAge(); } });
collectInt
in interface MutableMap<K,V>
collectInt
in interface RichIterable<K>
collectInt
in interface UnsortedMapIterable<K,V>
collectInt
in class AbstractSynchronizedRichIterable<V>
public MutableLongBag collectLong(LongFunction<? super V> longFunction)
RichIterable
long
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
LongIterable longs = people.collectLong(person -> person.getGuid());
Example using an anonymous inner class:
LongIterable longs = people.collectLong(new LongFunction<Person>() { public long longValueOf(Person person) { return person.getGuid(); } });
collectLong
in interface MutableMap<K,V>
collectLong
in interface RichIterable<K>
collectLong
in interface UnsortedMapIterable<K,V>
collectLong
in class AbstractSynchronizedRichIterable<V>
public MutableShortBag collectShort(ShortFunction<? super V> shortFunction)
RichIterable
short
iterable with the results of applying the specified function on each element
of the source collection. This method is also commonly called transform or map.
Example using a Java 8 lambda expression:
ShortIterable shorts = people.collectShort(person -> person.getNumberOfJunkMailItemsReceivedPerMonth());
Example using an anonymous inner class:
ShortIterable shorts = people.collectShort(new ShortFunction<Person>() { public short shortValueOf(Person person) { return person.getNumberOfJunkMailItemsReceivedPerMonth(); } });
collectShort
in interface MutableMap<K,V>
collectShort
in interface RichIterable<K>
collectShort
in interface UnsortedMapIterable<K,V>
collectShort
in class AbstractSynchronizedRichIterable<V>
public <P,A> MutableBag<A> collectWith(Function2<? super V,? super P,? extends A> function, P parameter)
RichIterable
RichIterable.collect(Function)
with a Function2
and specified parameter which is passed to the block.
Example using a Java 8 lambda expression:
RichIterable<Integer> integers = Lists.mutable.with(1, 2, 3).collectWith((each, parameter) -> each + parameter, Integer.valueOf(1));
Example using an anonymous inner class:
Function2<Integer, Integer, Integer> addParameterFunction = new Function2<Integer, Integer, Integer>() { public Integer value(Integer each, Integer parameter) { return each + parameter; } }; RichIterable<Integer> integers = Lists.mutable.with(1, 2, 3).collectWith(addParameterFunction, Integer.valueOf(1));
collectWith
in interface MutableMap<K,V>
collectWith
in interface RichIterable<K>
collectWith
in interface UnsortedMapIterable<K,V>
collectWith
in class AbstractSynchronizedRichIterable<V>
function
- A Function2
to use as the collect transformation functionparameter
- A parameter to pass in for evaluation of the second argument P
in function
RichIterable
that contains the transformed elements returned by Function2.value(Object, Object)
RichIterable.collect(Function)
public <A> MutableBag<A> collectIf(Predicate<? super V> predicate, Function<? super V,? extends A> function)
RichIterable
Example using a Java 8 lambda and method reference:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(e -> e != null, Object::toString);
Example using Predicates factory:
RichIterable<String> strings = Lists.mutable.with(1, 2, 3).collectIf(Predicates.notNull(), Functions.getToString());
collectIf
in interface MutableMap<K,V>
collectIf
in interface RichIterable<K>
collectIf
in interface UnsortedMapIterable<K,V>
collectIf
in class AbstractSynchronizedRichIterable<V>
public <A> MutableBag<A> flatCollect(Function<? super V,? extends java.lang.Iterable<A>> function)
RichIterable
flatCollect
is a special case of RichIterable.collect(Function)
. With collect
, when the Function
returns
a collection, the result is a collection of collections. flatCollect
outputs a single "flattened" collection
instead. This method is commonly called flatMap.
Consider the following example where we have a Person
class, and each Person
has a list of Address
objects. Take the following Function
:
Function<Person, List<Address>> addressFunction = Person::getAddresses; RichIterable<Person> people = ...;Using
collect
returns a collection of collections of addresses.
RichIterable<List<Address>> addresses = people.collect(addressFunction);Using
flatCollect
returns a single flattened list of addresses.
RichIterable<Address> addresses = people.flatCollect(addressFunction);
flatCollect
in interface MutableMap<K,V>
flatCollect
in interface RichIterable<K>
flatCollect
in interface UnsortedMapIterable<K,V>
flatCollect
in class AbstractSynchronizedRichIterable<V>
function
- The Function
to applyfunction
public <KK> MutableBagMultimap<KK,V> groupBy(Function<? super V,? extends KK> function)
RichIterable
Example using a Java 8 method reference:
Multimap<String, Person> peopleByLastName = people.groupBy(Person::getLastName);
Example using an anonymous inner class:
Multimap<String, Person> peopleByLastName = people.groupBy(new Function<Person, String>() { public String valueOf(Person person) { return person.getLastName(); } });
groupBy
in interface MutableMap<K,V>
groupBy
in interface MutableMapIterable<K,V>
groupBy
in interface RichIterable<K>
groupBy
in interface UnsortedMapIterable<K,V>
groupBy
in class AbstractSynchronizedMapIterable<K,V>
public <KK> MutableBagMultimap<KK,V> groupByEach(Function<? super V,? extends java.lang.Iterable<KK>> function)
RichIterable
RichIterable.groupBy(Function)
, except the result of evaluating function will return a collection of keys
for each value.groupByEach
in interface MutableMap<K,V>
groupByEach
in interface MutableMapIterable<K,V>
groupByEach
in interface RichIterable<K>
groupByEach
in interface UnsortedMapIterable<K,V>
groupByEach
in class AbstractSynchronizedMapIterable<K,V>
@Deprecated public <S> MutableBag<Pair<V,S>> zip(java.lang.Iterable<S> that)
OrderedIterable.zip(Iterable)
instead.RichIterable
RichIterable
formed from this RichIterable
and another RichIterable
by
combining corresponding elements in pairs. If one of the two RichIterable
s is longer than the other, its
remaining elements are ignored.zip
in interface MutableMap<K,V>
zip
in interface MutableMapIterable<K,V>
zip
in interface RichIterable<K>
zip
in interface UnsortedMapIterable<K,V>
zip
in class AbstractSynchronizedMapIterable<K,V>
S
- the type of the second half of the returned pairsthat
- The RichIterable
providing the second half of each result pairRichIterable
containing pairs consisting of corresponding elements of this
RichIterable
and that. The length of the returned RichIterable
is the minimum of the lengths of
this RichIterable
and that.public <VV> MutableMap<VV,V> groupByUniqueKey(Function<? super V,? extends VV> function)
RichIterable
groupByUniqueKey
in interface MutableMap<K,V>
groupByUniqueKey
in interface MutableMapIterable<K,V>
groupByUniqueKey
in interface RichIterable<K>
groupByUniqueKey
in interface UnsortedMapIterable<K,V>
groupByUniqueKey
in class AbstractSynchronizedMapIterable<K,V>
RichIterable.groupBy(Function)
public MutableMap<V,K> flipUniqueValues()
MapIterable
MapIterable<Integer, String> map = this.newMapWithKeysValues(1, "1", 2, "2", 3, "3"); MapIterable<String, Integer> result = map.flipUniqueValues(); Assert.assertTrue(result.equals(UnifiedMap.newWithKeysValues("1", 1, "2", 2, "3", 3)));
flipUniqueValues
in interface MapIterable<K,V>
flipUniqueValues
in interface MutableMap<K,V>
flipUniqueValues
in interface MutableMapIterable<K,V>
flipUniqueValues
in interface UnsortedMapIterable<K,V>
public MutableSetMultimap<V,K> flip()
MapIterable
Since the keys in the input are unique, the values in the output are unique, so the return type should be a SetMultimap. However since SetMultimap and SortedSetMultimap don't inherit from one another, SetMultimap here does not allow SortedMapIterable to have a SortedSetMultimap return. Thus we compromise and call this Multimap, even though all implementations will be a SetMultimap or SortedSetMultimap.
flip
in interface MapIterable<K,V>
flip
in interface MutableMap<K,V>
flip
in interface MutableMapIterable<K,V>
flip
in interface UnsortedMapIterable<K,V>
public java.util.Collection<V> values()
public RichIterable<K> keysView()
MapIterable
keysView
in interface MapIterable<K,V>
public RichIterable<V> valuesView()
MapIterable
valuesView
in interface MapIterable<K,V>
public MutableMap<K,V> asUnmodifiable()
MutableMapIterable
Collections.unmodifiableMap(this)
only with a return type that supports the full
iteration protocols available on MutableMapIterable
. Methods which would
mutate the underlying map will throw UnsupportedOperationExceptions.asUnmodifiable
in interface MutableMap<K,V>
asUnmodifiable
in interface MutableMapIterable<K,V>
Collections.unmodifiableMap(Map)
public MutableMap<K,V> asSynchronized()
MutableMapIterable
Collections.synchronizedMap(this)
only with the more feature rich return type of
MutableMapIterable
.
The preferred way of iterating over a synchronized map is to use the forEachKey(), forEachValue() and forEachKeyValue() methods which are properly synchronized internally.
MutableMap synchedMap = map.asSynchronized(); synchedMap.forEachKey(key -> ... ); synchedMap.forEachValue(value -> ... ); synchedMap.forEachKeyValue((key, value) -> ... );
If you want to iterate imperatively over the keySet(), values(), or entrySet(), you will need to protect the iteration by wrapping the code in a synchronized block on the map.
asSynchronized
in interface MutableMap<K,V>
asSynchronized
in interface MutableMapIterable<K,V>
Collections.synchronizedMap(Map)
public ImmutableMap<K,V> toImmutable()
MutableMapIterable
toImmutable
in interface MapIterable<K,V>
toImmutable
in interface MutableMapIterable<K,V>
toImmutable
in interface UnsortedMapIterable<K,V>
Copyright © 2004–2017. All rights reserved.